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Abstract

A class of convolution operators on spaces of holomorphic functions
related to the Hadamard multiplication theorem for power series and gen-
eralizing infinite order Euler differential operators is introduced and inves-
tigated. Emphasis is placed on questions concerning injectivity, denseness
of range and surjectivity of the operators.
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1 Introduction

Let C∗ := C \ {0} denote the punctured plane. Then C∗ is a group with
respect to multiplication. Moreover, let U be an open subset of C∗ and let
H(U) denote the space of functions holomorphic in U with the usual topology
of locally uniform convergence.
Multiplicative convolution operators T = Tµ acting on H(C∗) can be defined as

Tf(z) := 〈f(z/·), µ〉 (f ∈ H(C∗)),

where µ is some analytic functional with carrier contained in C∗.
According to Köthe-Grothendieck duality, each analytic functional as above
corresponds in a unique way to a function ϕ holomorphic on the complement
of the carrier of µ with respect to the Riemann sphere. For ρ > 0 we define
τρ(t) := ρeit (t ∈ [−π, π]), i.e. τρ traverses the circle {|z| = ρ} in the positive
direction. If f ∈ H(C∗) and if L is a compact set in C∗, then, for R is sufficiently
large and r sufficiently small,

Tf(z) =
1

2πi

(∫
τR

−
∫
τr

)
ϕ

(
z

ζ

)
f(ζ)

ζ
dζ (z ∈ L). (1)
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Since ϕ is holomorphic at 0 and at ∞, we have

ϕ(z) =

∞∑
ν=0

ϕνz
ν (2)

near 0 and

ϕ(z) =

∞∑
ν=1

−ϕ−νz−ν (3)

near ∞. Denoting by pk : C∗ → C∗ the k-th monomial, that is, pk(z) := zk

for z ∈ C∗ and k ∈ Z, and plugging in (2) for the first integral and (3) for the
second integral on the right hand side of (1), leads to the basic property

Tpk = ϕk · pk (k ∈ Z) (4)

and in particular to (Tpk)(1) = ϕk. More generally, if f has the Laurent
expansion

∑∞
ν=−∞ fνz

ν in C∗, then the continuity of T implies

Tf(z) =

∞∑
ν=−∞

ϕνfνz
ν (z ∈ C∗).

We consider U to be an open subset of C∗. Our aim is to study multiplicative
convolution operators on H(U) (and on appropriate subspaces of H(U)), which
we are going to introduce now. Of importance is the concept of Cauchy and
anti-Cauchy cycles.
If L ⊂ U is compact, a cycle Γ in U \ L is called a Cauchy cycle for L in U if

indΓ(w) = 1 (w ∈ L) and indΓ(w) = 0 (w ∈ C \ U)

(note that we always require indΓ(0) = 0). According to [27, Theorem 13.5], for
each pair (U,L) as above a Cauchy cycle exists. For basic notations and facts
concerning cycles we refer to [27, Chapter 10]. If f ∈ H(U) and if Γ is a Cauchy
cycle for L in U , then Cauchy’s theorem ([27, Therorem 10.35]) implies that

f(z) =
1

2πi

∫
Γ

1

1− z/ζ
f(ζ)

ζ
dζ (z ∈ L).

Let in the sequel Ω always be open in C∗ and so that Ω∪{0,∞} is open in C∞,
where C∞ denotes the extended plane. In this case we say that Ω is spherically
open. If, in addition, Ω is connected, we call Ω a spherical domain. Moreover,
we consider a function ϕ ∈ H(Ω)
Finally, for A,B ⊂ C∗ we define A∗ := 1/(C∗ \A) (with 1/∅ := ∅) and

A ∗B := (A∗ ·B∗)∗

where, as usual, C ·D := {zw : z ∈ C,w ∈ D} for C,D ⊂ C. The following fact
plays a basic role : For an arbitrary set S ⊂ C∗ we have

S ⊂ A ∗B if and only if S ·A∗ ⊂ B (5)
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(see [22]). Moreover, if S is compact, then S · Ω∗ is compact .
Let f ∈ H(U), L ⊂ Ω ∗U compact, and Γ = ΓL a Cauchy cycle for L ·Ω∗ in U .
Then z/ζ ∈ Ω for z ∈ L and ζ ∈ Γ (note that ζ 6∈ z · Ω∗ and thus ζ/z 6∈ Ω∗),
and from Cauchy’s theorem one can deduce that

(ϕ ∗ f)(z) = (ϕ ∗Ω,U f)(z) :=
1

2πi

∫
Γ

ϕ

(
z

ζ

)
f(ζ)

ζ
dζ (z ∈ L) (6)

defines (independently of the choice of Γ) a function ϕ∗f ∈ H(Ω∗U). Moreover,
the mapping

H(Ω)×H(U) 3 (ϕ, f) 7→ ϕ ∗ f ∈ H(Ω ∗ U)

is bilinear and continuous (cf. [9], [20], [22]). The definition shows that the
following compatibility property is satisfied: If Ũ ⊃ U and Ω̃ ⊃ Ω are as above,
then

(ϕ|Ω) ∗Ω,U (f |U ) = ϕ ∗Ω̃,Ũ f

for all ϕ ∈ H(Ω̃) and f ∈ H(Ω̃). This justifies the suppression of the open sets
by writing briefly ϕ ∗ f .
We emphasize a special case: If Ω = C∗ \ {1} then Ω ∗ U = U for arbitrary
open sets U as above and thus ϕ ∗ f ∈ H(U). In the case of the Cauchy kernel
ϕ = 1∗ ∈ H(C∗ \ {1}), i.e. 1∗(z) := 1/(1− z), we obtain 1∗ ∗ f = f .

In the sequel we write Γ− for the ”opposite” cycle of Γ, that is, the paths
constituting Γ are traversed in the opposite direction (cf. [27, p. 218]). Then
for compact L ⊂ C∗ the cycle Γ consisting of τR and τ−r for R sufficiently large
and r sufficiently small is a Cauchy cycle for L in U = C∗. In this case, the
right hand side of (6) equals the right hand side of (1).
Let V be spherically open and B ⊂ V closed in C∗. We call a cycle Γ in V \B
an anti-Cauchy cycle for B in V if

indΓ(w) = 0 (w ∈ B) and indΓ(w) = −1 (w ∈ C∗ \ V ).

For each (V,B) as above (with V 6= B), an anti-Cauchy cycle exists, and for
z ∈ Ω ∗ U , a cycle Γ is a Cauchy cycle for z · Ω∗ in U if and only if z/Γ− is a
anti-Cauchy cycle for z · U∗ in Ω (see [22]).
If f ∈ H(U), L ⊂ Ω ∗ U compact, and Γ an anti-Cauchy cycle for L · U∗ in Ω
we define

(f ∗ ϕ)(z) = (f ∗U,Ω ϕ)(z) :=
1

2πi

∫
Γ

f
( z
ω

) ϕ(ω)

ω
dω (z ∈ L)

(independently of the choice of Γ). Then the substitution ζ = z/ω leads to

ϕ ∗ f = f ∗ ϕ

that is, the convolution product is commutative.
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Let Ω be spherically open, ϕ ∈ H(Ω) and U ⊂ C∗ open. The main objective of
this paper is the investigation of the (continuous) operator

Tϕ = Tϕ,U : H(U)→ H(Ω ∗ U), Tϕf := ϕ ∗ f (f ∈ H(U))

and of natural restrictions of this operator. We write pk,M := pk|M for M ⊂ C∗.
From (4) and the compatibility property (with Ũ = C∗) it follows that for all
open subsets U of C∗

Tϕpk,U = ϕk · pk,Ω∗U (k ∈ Z). (7)

If, in addition, C∗ \U has no compact components, then Runge’s theorem shows
that the span of the pk,U is dense in H(U) and thus Tϕ is uniquely determined
by the sequence of multipliers (ϕk).
In the special case Ω = C∗ \{1} we have Tϕ : H(U)→ H(U) and thus (7) shows
that the monomials pk,U are eigenfunctions corresponding to the eigenvalues ϕk,
that is, Tϕ is a multiplier on H(U). In this case, the operator Tϕ may be written
as an infinite order Euler differential operator (cf. [10, Section 11.2]). Euler
differential operators and multipliers on spaces of real analytic functions were
rigorously investigated in a series of publications by Domański and Langenbruch
([5], [6], [7]), cf. also the papers [11], [12] of Ishimura.
If U ∪ {0} is open in C and if f(z) =

∑∞
ν=0 fνz

ν =: f+(z) on 0 < |z| < r for
some r > 0 (that is, f has a removable singularity at 0), we obtain from (7),
the continuity of Tϕ,{0<|z|<r} and the compatibility property that

(ϕ ∗ f)(z) =

∞∑
ν=0

ϕνfνz
ν (8)

for z 6= 0 near 0. This is the Hadamard multiplication theorem in a general
form (see e.g. [9], [20], [22], and [10, Theorem 11.6.1], [28, Theorem 3.2] for the
classcal ”starlike” version). Because of this connection, we call ϕ ∗ f Hadamard
convolution product of ϕ and f and Tϕ Hadamard convolution operator. For
further results on the Hadamard product and the Hadamard operator see e.g.
[4], [21], [24], [25], [26].
Similarly, if U ∪ {∞} is open in C∞ and f(z) =

∑∞
ν=1−f−νz−ν =: f−(z) near

∞ then

(ϕ ∗ f)(z) =

∞∑
ν=1

−ϕ−νf−νz−ν (9)

near ∞.
We write H+(U) for the closed subspace of H(U) consisting of those functions
having a removable singularity at 0 (in case that U ∪ {0} is open) and H−(U)
for the closed subspace of functions that vanish at ∞ (in case that U ∪ {∞} is
open). By H±(U) we denote the intersection of both spaces (if U is spherically
open). According to our assumptions, we always have ϕ ∈ H±(Ω).
If we put

M+ := M ∪ {0}, M− := M ∪ {∞}, M± := M ∪ {0,∞}

4



for M ⊂ C∗, then H+(U) is in an obvious way isomorphic to H(U+), and
similarly H−(U) ∼= H(U−) and H±(U) ∼= H(U±). With that, we define T+

ϕ :
H+(U)→ H+(Ω∗U), T−ϕ : H−(U)→ H−(Ω∗U) and T±ϕ : H±(U)→ H±(Ω∗U)
by restriction of Tϕ to the corresponding subspaces (note that, according to (8)
and (9), we have Tϕ(H∗(U)) ⊂ H+(Ω ∗ U) and Tϕ(H−(U)) ⊂ H−(Ω ∗ U),
respectively).
The above operators are already introduced in [22], where, however, the defini-
tion of Tϕ is given for subsets of the extended plane C∞ instead of the punctured
plane C∗. This approach requires the distinction of a number of different cases
depending on whether 0 or ∞ belong to U or not. The above approach reduces
the underlying calculations considerably.

The paper is arranged as follows: In Sections 2 and 3 we consider spherical
domains Ω of a special form. In the case of open sets U having simply connected
components (that is, C∞ \ U is connected) studied in Section 2, results about
injectivity, denseness of the range and surjectivity for Tϕ can be obtained from
corresponding (known) results for additive convolution operators. In Section 3
we use Köthe-Grothendieck duality in order to describe the dual operator of
Tϕ. The main ingredient for the proof is an associative law for the Hadamard
convolution product. Moreover, applications of duality concerning injectivity,
denseness of the range and surjectivity are given, here mainly for the operators
T±ϕ . Finally, in Section 4, we consider more general spherically open sets Ω.

2 Conjugation to additive convolution

Let K ⊂ S := {w ∈ C : |Im(w)| < π} be compact and convex. Then

ΩK := (eK)∗

is spherically open. We write K for the set of all K 6= ∅ as above, that is, K ⊂ S
convex and compact.
It is known (see [2, Section 4.1]) that there is a one-to-one correspondence
between the analytic functionals with convex carrier contained in K and H(ΩK)
given by the so-called G-transform, that is,

Gµ(z) :=

〈
ζ 7→ 1

1− zeζ
, µ

〉
(z ∈ ΩK)

for µ an analytic functional with convex carrier in K. Moreover, for ϕ ∈ H(ΩK),
the Mellin transform Mϕ of ϕ is given by

Mϕ(α) :=
1

2πi

∫
Γ−

ϕ(ζ)

ζα+1
dζ (α ∈ C) ,

where Γ is a Cauchy cycle for e−K in C− := C \ (−∞, 0], and ζc := exp(c log ζ)
with the principal branch of the logarithm. The Mellin transformation M :
H(ΩK)→ Exp(K) turns out to be an isomorphism betweenH(ΩK) and Exp(K),
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the space of entire functions of exponential type having conjugate indicator di-
agram contained in K (see e.g. [2, p. 82, p. 266]). In the sequel we often write
Φ := Mϕ for brevity. Again referring to [2, Section 4.1], we have M = F ◦G−1,
where F denotes the Fourier-Borel transformation.
The situation in the special case K = {0} is known as the Wigert-Leau Theorem.
In this case ΩK = C∗ \ {1} and Φ = Mϕ is of exponential type zero. Moreover,
we then have ΩK ∗ U = U and Tϕ is an Euler differential operator of the form

Tϕf = Φ(ϑ)f :=

∞∑
k=0

Φkϑ
kf (f ∈ H(U))

where (ϑf)(z) := zf ′(z) and Φ(α) =
∑∞
k=0 Φkα

k (see, e.g. [2, pp. 71, pp.
419], [10, Section 11.2], [22]). Conversely, since M is bijective, for each Φ of
exponential type zero the operator Φ(ϑ) is of the form TM−1Φ. For Φ(α) = α
we get the Koebe function κ(z) := z/(1− z)2 =

∑∞
ν=0 νz

ν and Tκf = ϑf .

In this section we consider open sets U ⊂ C∗ with simply connected components.
Here, by appropriate exp/log substitution, the multiplicative convolution oper-
ators can be conjugated to additive convolution operators. We frequently use
the fact that Ω∗U has simply connected components if U has simply connected
components (this follows from (Ω ∗ U)∗ = Ω∗U∗ =

⋃
w∈Ω∗ w · U∗, the connect-

edness of C∞ \ w · U∗, and 0 ∈ C∞ \ w · U∗ for w 6= 0). Moreover, we write
Uδ(z0) := {z : |z − z0| < δ} for δ > 0 and z0 ∈ C. Again, by log we denote the
principal brach of the logarithm on the cut plane C−.

2.1 Lemma. Let U ⊂ C∗ be open with simply connected components and Ω =
ΩK for some K ∈ K. Then for each logarithm logU on U there exists a logarithm
logΩ∗U on Ω ∗ U such that

logU (
z

ζ
) = logΩ∗U (z)− log(ζ) (10)

for z ∈ Ω ∗ U and ζ belonging to a sufficiently small neighborhood of e−K .

Proof. We fix a branch of the logarithm on each component of U and denote the
resulting holomorphic function on U by logU . Our aim is to show that branches
of the logarithm on the components of Ω ∗ U can be chosen in such a way that
the asserted identity holds.
It is clear that there exists a number a ∈ K such that the set K − a contains
the origin (if K itself contains the origin we choose a = 0). This implies that
1 6∈ ea · Ω and therefore ea · (Ω ∗ U) ⊂ U . Especially, every component of
ea · (Ω ∗ U) is a subset of a component of U . Therefore it is meaningful to set
logea·(Ω∗U)(e

az) := logU (eaz) (z ∈ Ω ∗ U).
Obviously, every branch of the logarithm on Ω∗U fulfills the following equation
for all z ∈ Ω ∗ U :

logΩ∗U (z) = logU (eaz)− a+ 2πik(z)
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for some k(z) ∈ Z. The map

Ω ∗ U 3 z 7→ logΩ∗U (z)− (logU (eaz)− a) ∈ C

is continuous and its range is a discrete subset of C. Therefore it must be
constant on every component of Ω ∗ U . Hence, the branch of the logarithm on
every component of Ω ∗ U can be chosen so that

logΩ∗U (z) = logU (eaz)− a (z ∈ Ω ∗ U) . (11)

Let now z ∈ Ω ∗ U be given. The set z · U∗ is a compact subset of the open
set Ω (see (5)) and therefore we can find a number δ1 = δ1(z) > 0 such that
(e−K + Uδ1(0)) ∩ z · U∗ = ∅. On the other hand, e−K is a compact subset
of the open set C− and therefore we can find a number δ2 > 0 such that
e−K + Uδ2(0) ⊂ C−. We set δ := min{δ1, δ2} and Vδ := e−K + Uδ(0).
In order to prove (10) we first of all note that the left-hand side of (10) is defined
since z/ζ ∈ U for all ζ ∈ Vδ. Indeed, assuming the existence of a number w ∈ UC
with z/ζ = w would imply z · U∗ 3 z/w = ζ ∈ Vδ which contradicts the choice
of δ.
Obviously we have

gz(ζ) := logU (
z

ζ
)− (logΩ∗U (z)− log(ζ)) = 2kz(ζ)πi (ζ ∈ Vδ)

for some kz(ζ) ∈ Z. The same argument as above yields that gz is constant on
Vδ (note that Vδ is connected). Inserting ζ0 = e−a ∈ Vδ implies (with (11) and
noting that a ∈ K and therefore log(e−a) = −a)

gz(ζ) = gz(ζ0) = logU (eaz)− (logU (eaz)− a− log(e−a)) = 0 (ζ ∈ Vδ).

This completes the proof of the asserted equation. �

Let O be an open subset of C and let µ be an analytic functional with convex
carrier in K. We consider additive convolution operators S = Sµ : H(O+K)→
H(O) of the form

Sg(w) := 〈h(w + ·), µ〉 (h ∈ H(O +K), w ∈ O)

(see, e.g. [2], [16]). If U ⊂ C− has simply connected components and if loga-
rithms on U and Ω ∗ U are fixed as in Lemma 2.1, then (5) implies that

(Ω ∗ U)log +K ⊂ Ulog,

where we write Ulog := logU (U) and (Ω ∗ U)log := logΩ∗U (Ω ∗ U) for brevity.
For ϕ = Gµ we define Sϕ : H(Ulog) → H((Ω ∗ U)log) as the restriction of the
additive convolution operator S to H(Ulog). Then we have

Sϕh(w) =
1

2πi

∫
Γ

ϕ(ζ)h(w − log(ζ))
dζ

ζ
(h ∈ H(Ulog), w ∈ (Ω ∗ U)log),
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where Γ is an anti-Cauchy cycle for ew · U∗ in Ω ∩ C− (cf. [2, Section 4.1] and
note that ew/Γ− is a Cauchy cycle for ew ·Ω∗ in U and therefore Γ− is a Cauchy
cycle for e−K in (ew/U) ∩ C−). Now, according to Lemma 2.1 we have

(Sϕh) ◦ logΩ∗U = Tϕ(h ◦ logU ) (h ∈ H(Ulog)) (12)

and the following diagram commutes:

H(Ulog)
Sϕ //

◦ logU
��

H((Ω ∗ U)log)

◦ logΩ∗U

��
H(U)

Tϕ

//

◦ exp|Ulog

OO

H(Ω ∗ U)

◦ exp|(Ω∗U)log

OO

With that it is possible to transfer (known) results for additive convolution
operators to our multiplicative Hadamard operators.

2.2 Theorem. Let U ⊂ C∗ be open with simply connected components and
Ω = ΩK for some K ∈ K. If ϕ ∈ H(Ω) \ {0} then Tϕ has dense range.

Proof. It is known that for µ 6= 0 the additive convolution operator S :
H(C) → H(C) is surjective (see, e.g. [2, Proposition 1.5.8]). Since logΩ∗U
is one-to-one from Ω ∗ U to (Ω ∗ U)log, the open set (Ω ∗ U)log has simply
simply connected components. According to Runge’s theorem, the operator
Sϕ : H(Ulog) → H((Ω ∗ U)log) has dense range. But then also Tϕ has dense
range. �

In the sequel we use the abbreviations Kδ := i[−πδ, πδ] and Bδ := eKδ for δ ≥ 0.
Moreover, we put arg z := Im log z ∈ (−π, π].

2.3 Example. 1. We consider the simple but illustrating example Ω = C∗ \
{±i},

ϕ(z) =
1

1 + z2
=

1

2

(
1

1− eiπ/2z
+

1

1− e−iπ/2z

)
(z ∈ Ω).

If U = C− then Ω∗U = {z : Re(z) 6= 0}. Since ϕ is even, by definition the same
holds for ϕ ∗ f for all f ∈ H(U) (take L = {±z} in (6)). Thus, im(Tϕ) is not
dense in H(Ω ∗ U). On the other hand, since M1∗(e

β ·)(α) = eβα for α, β ∈ C,
we see that

Φ(α) = Mϕ(α) = cos(απ/2) (α ∈ C).

The (conjugate) indicator diagram of Φ is the line segment K1/2 on the imagi-
nary axis. Therefore, ΩK∗U = {z : Re(z) > 0} is the right half plane. According
to Theorem 2.2, im(Tϕ|ΩK ) is dense in H(ΩK ∗ U).

2. Let {αn : n ∈ N} be an increasing sequence of positive integers with
limn→∞ n/αn = δ < 1 and

Φ(α) :=

∞∏
n=1

(
1− α2

α2
n

)
(α ∈ C) .
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Then Φ is of exponential type with (conjugate) indicator diagram Kδ (see, e.g.
[17, p. 205]). Hence ϕ = M−1Φ is holomorphic in Ω = B∗δ .
If U = C− then Ω ∗ U = {z : | arg(z)| < π(1− δ)} and Theorem 2.2 yields that
the operator Tϕ has dense range. The example in 1. is embedded as the special
case αn = 2n+ 1.

For an open set U ⊂ C∗ with simply connected components let

pα,U (z) := eα logU z

for z ∈ U and α ∈ C, where logU is some logarithm on U . If logΩ∗U is a
logarithm on Ω ∗ U according to Lemma 2.1, then for α ∈ C

Tϕpα,U = (Sϕ exp(α ·)) ◦ logΩ∗U = Φ(α)pα,Ω∗U . (13)

Comparing with (7) it is seen that, in particular,

ϕk = Φ(k) (k ∈ Z). (14)

As a consequence we obtain

2.4 Theorem. If U ⊂ C∗ is a simply connected domain and if ϕ ∈ H(Ω),
where Ω = ΩK for some K ∈ K, then the following are equivalent:

1. Tϕ is injective,

2. Φ has no zeros,

3. ϕ is a nonzero multiple of 1∗(e
β ·) for some β ∈ K.

Proof. (13) yields that 1. implies 2.
In order to show that 2. implies 3. we assume that Φ ∈ Exp(K) has no zeros.
Then according to the Hadamard factorization theorem (see e.g. [3, Th. 2.7.1]),
there are numbers α, β ∈ C such that Φ(z) = exp(βz + α) (z ∈ C). In order
that the condition Φ ∈ Exp(K) is satisfied, β must belong to the set K. Setting
λ := eα 6= 0, the power series expansion of ϕ about zero yields that

ϕ(z) =
λ

1− eβz
(z ∈ Ω) .

To prove that 3. implies 1. we examine how Tϕ acts on a function f ∈ H(U).
For all z ∈ Ω ∗ U we obtain

Tϕf(z) =
1

2πi

∫
Γ

λ

1− eβz/ζ
f(ζ)

dζ

ζ
= λf(eβz)

where Γ is a Cauchy cycle for z · eK in U and the last identity follows from the
Cauchy integral formula. Since U is connected, the operator Tϕ is injective. �

For the special case K = {0} we obtain from Theorems 2.2 and 2.4.
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2.5 Corollary. Let U ⊂ C∗ be open with simply connected components and
let Φ 6= 0 be an entire function of exponential type 0. Then

1. Φ(ϑ) has dense range.

2. Φ(ϑ) is injective if and only if Φ(ϑ) is a nonzero multiple of the identity
on H(U).

2.6 Remark. The situation changes drastically if U does not have simply
connected components: If U = C∗(= Ω ∗ U) and if Φ has a zero at some
integer, then Laurent expansion and (4) show that Φ(ϑ) : H(U) → H(U) has
no longer dense range. For instance, if Φ(α) = α, that is, Tϕf = ϑf , then the
function g = 1 does not belong to the closure of im(Tϕ).

We now turn towards the question under which conditions the operator Tϕ is
even surjective.
Let Φ 6= 0 be an entire function of exponential type. Then Φ is said to be
of completely regular growth if there exists a set E of relative zero (Lebesgue)
measure such that limE 63r→∞ r−1 log |Φ(reit)| exists uniformly in t ∈ [−π, π]
(for this notion, see [17]; cf. [2, p. 88]). Moreover, by K(Φ) we denote the
conjugate indicator diagram of Φ (see e.g. [3] or [17]). Then we have

2.7 Theorem. Let K ∈ K and ϕ ∈ H(Ω), where Ω = ΩK . Moreover, we
suppose that Φ = Mϕ is an entire function of completely regular growth with
K(Φ) = K. If W ⊂ C is open and convex with W + K ⊂ S and U := eW+K ,
then Ω ∗ U = eW and Tϕ is surjective.

Proof.
1. We show that Ω∗U = eW . Since U = eW+K = eW ·Ω∗, (5) implies that Ω∗U
is a superset of eW . To obtain the reverse inclusion, we show (eW )∗ ⊂ (Ω ∗U)∗.
We have

(Ω ∗ U)∗ = Ω∗ · U∗ = eK · (eW+K)∗ = eK · e−(C\O)

where O :=
⋃
k∈Z

(W +K + 2kπi) (note that the sets W +K + 2kπi (k ∈ Z) are

pairwise disjoint).
Now let z ∈ (eW )∗. Then there is a point v ∈ S \W such that for all u ∈ K we
have

z = e−v = eu · e−(v+u) .

If u ∈ K can be chosen in such a way that v + u 6∈ O we are done.
Assume that this is not the case, i.e. v+K ⊂ O. Since v+K is connected, it has
to lie entirely in one component of O and that component shall without loss of
generality be the set W +K itself. Since W is convex, without loss of generality
we can choose an exhaustion (Ln)n∈N of W (i.e. (Ln) has the properties as in
[27, Theorem 13.3]) consisting of convex sets. Then (Ln+K) is an exhaustion of
W+K consisting of convex (and compact) sets. Since v+K is compact, there is
an integer n0 such that v+K ⊂ Ln0

+K. Moreover, since in the latter inclusion
all occurring sets are compact and convex, we can deduce v ∈ Ln0

⊂W (which

10



follows from the above properties of the support function). This contradicts the
choice of v.
2. Without loss of generality we may assume that 0 ∈ K and thus Ω ∗ U ⊂ U
(Indeed: If a ∈ K, then Φ̃ = Φ exp(−a ·) has indicator diagram K − a with
0 ∈ K − a. Then ϕ̃ = M−1Φ̃ and ϕ differ only by a multipicative scaling of the
variable.)
Let log be the principal branch of the logarithm. If we choose logΩ∗U = logU =
log, then the functional equation from Lemma 2.1 is satisfied. From 1. we have

log(Ω ∗ U) +K = W +K = log(U).

It is known that under the above assumptions, the additive convolution operator
Sϕ : H(W + K) → H(W ) is surjective. The corresponding result is found e.g.
in [2, 1.5.12] and [16, Theorem 6.1]), where it has to be noted that the Fourier-
Borel transform (or the Laplace transform transform in the language of [16]) of
the analytic functional µ coincides with the Mellin-transform Φ of ϕ = Gµ and
that K(Φ) equals the convex carrier of µ. But then, according to (12), also Tϕ
is surjective. �

2.8 Example. We consider again the situation in Example 2.3.2. There we
stated that Tϕ has dense range. Actually the function Φ is of completely regular
growth with K(Φ) = Kδ (see e.g. [17], p. 205). Hence, Theorem 2.7 (with
W = {w : |Im(w)| < π(1− δ}) yields that the operator Tϕ is even surjective.

Since each function of exponential type zero is of completely regular growth (see
e.g. [2, p. 90], [17, p. 158]), we obtain from Theorem 2.7:

2.9 Corollary. Let Φ 6= 0 be of exponential type 0 and let U ⊂ C− be a simply
connected domain so that log(U) is convex. Then Φ(ϑ) is surjective.

2.10 Remark. Similar results for corresponding classical differential operators
of infinite order Φ(D) : H(O)→ H(O),

Φ(D)h =

∞∑
k=0

ΦkD
kh (h ∈ H(O)),

where Dh := h′ and O ⊂ C an open set, are well-known (see e.g. [2, Theorem
6.4.4]). As a special case of (12), for U ⊂ C∗ with simply connected components,
the following diagram commutes:

H(Ulog)
Φ(D) //

◦ logU
��

H(Ulog)

◦ logU
��

H(U)
Φ(ϑ)

//

◦ exp|Ulog

OO

H(U)

◦ exp|Ulog

OO

This shows that results for the classical differential operators on H(Ulog) and the
corresponding Euler differential operators on H(U) turn out to be equivalent. In
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particular, since finite order differential operators are surjective as operators on
H(O) for all open sets O ⊂ C having simply connected components, we obtain
that for U ⊂ C∗ having simply connected components and ϕ ∈ H(C∗\{1}) with
Φ = Mϕ a polynomial, the operator Tϕ = Φ(ϑ) : H(U)→ H(U) is surjective as
well. This shows that for a polynomial Φ the convexity of Ulog is not necessary
for surjectivity of Φ(ϑ).
On the other hand, for transcendental Φ convexity of O turns out to be necessary
for surjectivity of Φ(D) (see [15]). Thus, for transcendental Φ, convexity of Ulog

is necessary for surjectivity of Φ(ϑ).

2.11 Remark. In [8], Frerick provides characterizations of the surjectivity of
the one-sided operators Φ(ϑ)+ : H+(U)→ H+(U):

1. Φ(ϑ)+ is surjective, for all U so that U+ is simply connected, if and only
if Z(Φ) ∩ N0 = ∅ and Φ is a polynomial or

lim
α→∞, α∈Z(Φ)

α/|α| = −1.

2. Φ(ϑ)+ is surjective, for all U so that U+ is starlike with respect to the
origin, if and only if Z(Φ) ∩ N0 = ∅ and Φ is a polynomial or

lim sup
α→∞, α∈Z(Φ)

Re(α/|α|) ≤ 0.

3 Transpose of Tϕ and applications

In order to describe the transpose of Tϕ it is important to provide an associative
law for the Hadamard convolution product.
Let U ⊂ C∗ be open and K ⊂ U compact. The hull hU (K) of K with respect to
U is defined as the union of K and all relatively compact components of U \K.
This implies that each component of (hU (K))∗ meets a component of U∗. For
a cycle Γ we denote by |Γ| the trace of Γ, i.e. the union of the images of the
closed paths constituting Γ.

3.1 Theorem. Let U ⊂ C∗ be open and Ω, V ⊂ C∗ spherically open. If f ∈
H(U), g ∈ H±(V ), and ϕ ∈ H±(Ω) then

g ∗ (ϕ ∗ f) = (g ∗ ϕ) ∗ f.

Proof. Let w ∈ V ∗ (Ω ∗ U). We choose Γ1 to be an anti-Cauchy cycle for
w · (Ω ∗ U)∗ in V . Then

indΓ1(z) = 0 (z ∈ w · (Ω ∗ U)∗), indΓ1(z) = −1 (z ∈ C∗ \ V ) (15)

and we obtain additionally

indΓ1
(z) = 0

(
z ∈ (h(Ω∗U)/w(1/|Γ1|))∗

)
. (16)

12



Indeed: Note that ((w · (Ω ∗U)∗)∗ = (Ω ∗U)/w. Since |Γ1| and w · (Ω ∗U)∗ are
disjoint and thus 1/|Γ1| ⊂ (Ω ∗ U)/w, by the properties of the hull mentioned
above it follows that |Γ1| ∩ (h(Ω∗U)/w(1/|Γ1|))∗ = ∅ and that each component
of (h(Ω∗U)/w(1/|Γ1|))∗ meets a component of w · (Ω ∗ U)∗. Therefore (16) is a
direct consequence of (15). We obtain

(g ∗ (ϕ ∗ f))(w) = ((ϕ ∗ f) ∗ g)(w) =
1

2πi

∫
Γ1

(ϕ ∗ f)(
w

t
)g(t)

dt

t
.

Now we choose Γ2 to be a Cauchy cycle for (w/|Γ1|) · Ω∗ in U . Actually,
we impose a stronger condition and require Γ2 to be a Cauchy cycle for w ·
h(Ω∗U)/w(1/|Γ1|) · Ω∗ in U . This is possible since the choice of Γ1 ensures that
|Γ1| ∩ w · (Ω ∗ U)∗ = ∅. Hence, (1/|Γ1|) and consequently h(Ω∗U)/w(1/|Γ1|) is a
compact subset of (Ω∗U)/w. This, in turn, implies that w ·h(Ω∗U)/w(1/|Γ1|) ·Ω∗
is a compact subset of U (see (5)).
We remark that the index property for Γ1 implies

V ∗ ⊂ h(Ω∗U)/w(1/|Γ1|)

and therefore

(w · (1/|Γ1|) · Ω∗) ∪ (w · V ∗ · Ω∗) ⊂ w · h(Ω∗U)/w(1/|Γ1|) · Ω∗ . (17)

This yields

(ϕ ∗ f)(
w

t
) =

1

2πi

∫
Γ2

ϕ(
w

tζ
)f(ζ)

dζ

ζ
(t ∈ Γ1)

and thus

(g ∗ (ϕ ∗ f))(w) =
1

2πi

∫
Γ1

g(t)

t

1

2πi

∫
Γ2

ϕ(
w

tζ
)f(ζ)

dζ

ζ
dt

=
1

2πi

∫
Γ2

f(ζ)

ζ

1

2πi

∫
Γ1

ϕ(
w

ζt
)
g(t)

t
dt dζ .

Now, we proceed in the opposite direction by first noting that

1

2πi

∫
Γ1

ϕ(
w

ζt
)
g(t)

t
dt = (ϕ ∗ g)(

w

ζ
).

Indeed, Γ1 should be an anti-Cauchy cycle for (w/|Γ2|) ·Ω∗ in V . We are going
to check that now:

1. |Γ1| ⊂ V according to the choice of Γ1.

2. We have
w · h(Ω∗U)/w(1/|Γ1|) ∩ (|Γ2| · (C∗ \ Ω)) = ∅ . (18)

Otherwise, this would contradict the fact that |Γ2| ∩w ·h(Ω∗U)/w(1/|Γ1|) ·
Ω∗ = ∅. A first consequence is that |Γ1| ∩ (w/|Γ2|) · Ω∗ = ∅.
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3. A second consequence of (18) is that (w/|Γ2|) · Ω∗ ⊂ (h(Ω∗U)/w(1/|Γ1|))∗
and therefore (see (16) and (15))

indΓ1(z) = 0 (z ∈ (w/|Γ2|) · Ω∗),
indΓ1(z) = −1 (z ∈ C∗ \ V ) .

Finally, we have

1. |Γ2| ⊂ U according to the choice of Γ2.

2. |Γ2| ∩w · (Ω ∗V )∗ = |Γ2| ∩w ·Ω∗ ·V ∗ = ∅ due to (17) and the choice of Γ2.

3. A second consequence of (17) and the choice of Γ2 is

indΓ2
(z) = 1 (z ∈ w · Ω∗ · V ∗) ,

indΓ2
(z) = 0 (z ∈ C \ U) .

Hence, Γ2 is as a Cauchy cycle for w · (Ω ∗ V )∗ in U . Therefore, we obtain

1

2πi

∫
Γ2

(ϕ ∗ g)(
w

ζ
)f(ζ)

dζ

ζ
= ((ϕ ∗ g) ∗ f)(w) = ((g ∗ ϕ) ∗ f)(w).

�
For a closed set B ⊂ C∞ we define

H(B) := {[(g,D)]B : D ⊃ B open , g ∈ H(D)}

(germs of holomorphic functions on B) with the inductive topology correspond-
ing to the restriction maps(

jD : H∞(D)→ H(B)
)
D⊃B open

(see, e.g. [19, p. 292]). If B ⊂ C∗ is closed, then also B± ⊂ C∞ is closed. By
identifying H(D±) and H±(D) for D spherically open, we get

H(B±) = {[(g,D)]B± : D ⊃ B spherically open , g ∈ H±(D)} .

3.2 Remark. (Köthe duality) With the above notations, the well known re-
presentation of the dual space H(U)′ given by Köthe can be formulated in terms
of the convolution product (cf. [9]):
Let U ⊂ C∗ be open. Then to each u ∈ H(U)′ there corresponds a unique germ
[(g,D)](U∗)± ∈ H((U∗)±) such that

u(f) = (g ∗ f)(1) (f ∈ H(U)) .

In the sequel we identify u and [(g,D)](U∗)± and write also g for short.

Note for the following that (Ω ∗ U)∗ = Ω∗U∗.
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3.3 Theorem. Let U ⊂ C∗ open. Then T ′ϕ : H((Ω∗U∗)±) → H((U∗)±) is
given by

T ′ϕ[(g, V )](Ω∗U∗)± = [(g ∗ ϕ, V ∗ Ω)](U∗)±

or, briefly, T ′ϕg = g ∗ ϕ(= ϕ ∗ g).

Proof. For an open superset D of (Ω ∗ U)∗ we have D∗ ⊂ Ω ∗ U , and (5) yields
(Ω ∗D)∗ = Ω∗ ·D∗ ⊂ U and therefore Ω ∗D ⊃ U∗. Hence [(ϕ ∗ g,Ω ∗ V )](U∗)±

belongs to the space H((U∗)±). Moreover, [(g ∗ ϕ, V ∗ Ω)](U∗)± is independent
of the choice of the representative (g, V ).
We have to check that the unique germ corresponding to T ′ϕg ∈ H(U)′ is given
by [(g ∗ ϕ, V ∗ Ω)](U∗)± ∈ H((U∗)±). We apply the associative law for the
Hadamard convolution product and obtain, for all f ∈ H(U),

T ′ϕg(f) = g(Tϕf) = (g ∗ (ϕ ∗ f))(1) = ((g ∗ ϕ) ∗ f)(1) = (g ∗ ϕ)(f).

3.4 Remark. According to the Hahn-Banach theorem, for appropriate U as in
the introduction we have (in the sense of Köthe-Grthendieck duality)

H+(U)′ = H((U∗)+), H−(U)′ = H((U∗)−), H±(U)′ = H(U∗)

and from that it follows that T+
ϕ : H((Ω∗U∗)+)→ H((U∗)+) is given by

(T+
ϕ )′[(g, V )](Ω∗U∗)+

= [(g ∗ ϕ, V ∗ Ω)](U∗)+

and similarly for (T−ϕ )′ : H((Ω∗U∗)−) → H((U∗)−) and (T±ϕ )′ : H(Ω∗U∗) →
H(U∗).

In the sequel we derive further results concerning injectivity and denseness of
the range via duality. We use the fact that a continuous linear operator between
locally convex spaces has dense range if and only if the transpose is injective.
As a dual version of Theorems 2.4 and 2.2 we obtain (note that U is spherically
open if Ω ∗ U is spherically open)

3.5 Theorem. Let ϕ ∈ H(Ω), where Ω = ΩK for some K ∈ K, and suppose
that Ω ∗ U is a spherical domain.

1. If U is a (spherical) domain and if ϕ 6= 0, then T±ϕ is injective,

2. T±ϕ has dense range if and only if Ω ∗ U = e−βU and ϕ is a nonzero

multiple of 1∗(e
β ·) for some β ∈ K.

Proof.
1. Note that since Ω∗U is a spherical domain there exists a closed and connected
set L ⊂ Ω∗U with 0,∞ belonging to the interior of L± ⊂ C∞. We set W := L∗

and obtain an open set in C∗ having connected complement. Furthermore, we
have W ∗ = L ⊂ Ω ∗ U and (5) yields that (Ω ∗W )∗ = W ∗ · Ω∗ is a compact
subset of U .
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Theorem 2.2 shows that the operator Tϕ,W : H(W ) → H(Ω ∗ W ) has dense
range. Hence

T ′ϕ,W : H((Ω∗W ∗)±)→ H((W ∗)±)

is injective.
Let now f ∈ ker(T±ϕ ) be given. Then [(f, U)](Ω∗W∗)± ∈ H((Ω∗W ∗)±) and

T ′ϕ,W [(f, U)](Ω∗W∗)± = [(ϕ ∗ f,Ω ∗ U)](W∗)± = [0](W∗)± .

Hence, [(f, U)](Ω∗W∗)± = [0](Ω∗W∗)± which means that f vanishes in an open
neighbourhood O of Ω∗W ∗. Since O ∩ U 6= ∅ and since U is connected, f
vanishes on U .
2. If K is so that Ω ∗U = e−βU and ϕ = λ1∗(e

β ·) then T±ϕ f = λf(eβ ·) (see the

proof of Theorem 2.4). In this case, T±ϕ : H±(U) → H±(e−βU) obviously has
dense range (actually, Tϕ is surjective).
Conversely, we suppose that T±ϕ has dense range. Then (T±ϕ )′ : H(Ω∗U∗) →
H(U∗) is injective. We can choose L as in part 1. of the proof so large that L
has no holes lying in Ω ∗ U . Then W = L∗ is so that each component contains
a point of Ω∗U∗. This implies that also Tϕ,W : H(W ) → (Ω ∗W ) is injective.
Theorem 2.4 shows that ϕ has the desired form. Moreover, then K has be so
that Ω ∗ U = e−βU since otherwise T±ϕ cannot have dense range. �

3.6 Example. We consider one more time the situation in Example 2.3.2. If
U = B∗η for some η < 1− δ, then Ω ∗U = B∗δ+η. According to Theorem 3.5, the

operator T±ϕ is injective.

3.7 Corollary. Let U ⊂ C∗ be a spherical domain and let Φ 6= 0. Then

1. Φ(ϑ)± : H±(U)→ H±(U) injective.

2. Φ(ϑ)± : H±(U) → H±(U) has dense range if and only if it is a nonzero
multiple of the identity on H±(U).

3.8 Remark. Note that in the case of a spherical domain U , no monomial pk
belongs to H±(U). The situation changes drastically if U has two components
V and W with 0 ∈ V+ and ∞ ∈ W−. In this case, pk,V ∈ H+(V ) for k ∈ N0

and and pk,W ∈ H−(W ) for k ∈ −N. If Φ has a zero at some integer, then
Φ(ϑ)± : H±(U) → H±(U) is no longer injective (according to Remark 4.1
below, at least one of the operators T+

ϕ,V and T−ϕ,W is not injective).

4 Results for more general Ω

So far we have only considered the case that Ω is of the form ΩK for some
K ∈ K, which implies that the Mellin transform of ϕ exists. Our aim now is
to obtain a result for more general spherically open Ω, for instance of the form
Ω = ΩK1

∩ΩK2
with K1,K2 ∈ K. It turns out that in some sense non-existence
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of the Mellin transform may be compensated by imposing conditions on the
number of non-vanishing coefficients ϕk.
We define

Nϕ+ := {k ∈ N0 : ϕk = 0}, Nϕ− := {k ∈ N : ϕ−k = 0}

and Nϕ := Nϕ+ ∪ (−Nϕ−). From (7) it follows immediately that

span{pk : k ∈ Nϕ} ⊂ ker(Tϕ)

and
span{pk : k ∈ Z \Nϕ} ⊂ im(Tϕ)

(with span ∅ = {0}). In particular, we see that Nϕ = ∅ is necessary for the
injectivity of Tϕ.

4.1 Remark. To obtain a description of the kernel for the one-sided cases T+
ϕ

and T−ϕ , we put

HN (U) := {f ∈ H+(U) : f+(z) =
∑
ν∈N

fνz
ν}

for N ⊂ N0 and

H−N (U) := {f ∈ H−(U) : f−(z) =
∑
ν∈N
−f−νz−ν}

for N ⊂ N. Then the expansions (8) and (9), respectively, show that

• span{pk : k ∈ Nϕ+} ⊂ ker(T+
ϕ ) ⊂ HNϕ+ (U) and if Ω ∗ U is connected,

then ker(T+
ϕ ) = HNϕ+ (U).

• span{pk : k ∈ −Nϕ−} ⊂ ker(T−ϕ ) ⊂ H−Nϕ− (U) and if Ω ∗ U is connected,

then ker(T−ϕ ) = H−Nϕ− (U).

As a consequence of the first parts we obtain in the case that U is a domain:

• T+
ϕ is injective if and only if Nϕ+ = ∅.

• T−ϕ injective if and only if Nϕ− = ∅.

For X ⊂ [0,∞) without finite accumulation point let n(r) = nX(r) be the
number of x ∈ X with x ≤ r, where r > 0. According to [23, p. 559] (see also
[13, p. 178]), the limit

d∗(X) := lim
ξ→1−

lim sup
r→∞

n(r)− n(rξ)

r − rξ

exists and is called the maximal density of X. If the density d(X) of X, i.e.
d(X) := limr→∞ n(r)/r exists, then d(X) = d∗(X). Moreover, d∗(X) = 0
implies the existence of d(X) (and d(X) = 0).
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4.2 Theorem. Let U be a spherical domain and suppose that B∗δ ∗ W is a
domain for some spherically open set W ⊂ U and some 0 ≤ δ < 1.
1. If N ⊂ N0 satisfies d∗(N) ≤ δ, then HN (U) ∩H±(U) = {0}.
2. If d∗(Nϕ+) ≤ δ, then T±ϕ is injective.

Proof.
1. We may assume that 0 6∈ N . According to [23, pp. 562] (see also [13, p.
178]), there exists a set X ⊂ [0,∞)\N with d(N∪X) = δ. Since X is countable,
there exists a number σ ∈ (0, 1) such that the set X ′ := X+σ does not intersect
the non-negative integers. Then {αn : n ∈ N} := N ∪X ′ is still a superset of
N with d(N ∪X ′) = δ and (N ∪X ′) ∩ N0 = N . We set

Ψ(α) :=

∞∏
n=1

(
1− α2

α2
n

)
(α ∈ C) .

Then Ψ ∈ Exp(Kδ) (see Example 2.3.2) with zeros exactly at the points ±αn.
Hence, ψ := M−1Ψ ∈ H±(B∗δ ) with Nψ+ = N .
By assumption, there exists a spherically open set W ⊂ U such that B∗δ ∗W is
connected. With Remark 4.1 and Theorem 3.5 we conclude

HN (W ) ∩H±(W ) = ker(T+
ψ ) ∩H±(W ) ⊂ ker(T±ψ ) = {0} .

Because U is a domain, we get HN (U) ∩H±(U) = {0}.
2. With Remark 4.1 and 1. we obtain

ker(T±ϕ ) ⊂ HNϕ+ (U) ∩H±(U) = {0} ,

�

4.3 Remark. 1. If we have δ = 0 in Theorem 4.2, then we can choose U = W
and thus the assertions hold for all spherical domains U . The first assertion can
be interpreted in the following way:
Whenever a power series about zero whose non-vanishing coefficients have den-
sity zero can be analytically continued up to infinity, then the power series must
vanish. Interpreted this way, the assertion is a special case of the Fabry gap
theorem (see e.g. [10, Section 11.7], [28, Section 6.4]).
2. If U contains a keyhole domain W of the form

Wr,R(η) = {0 < |z| < r} ∪ {|z| > R} ∪ {z : | arg(z)| < πη}

for some η > δ (and some 0 < r < R < ∞), then B∗δ ∗Wr,R(η) = Wr,R(η − δ)
is again a keyhole domain of the above form and thus in particular a spherical
domain. The first assertion of Theorem 4.2 shows that whenever a power series
about zero whose non-vanishing coefficients have maximal density δ can be
analytically continued into a keyhole domain of the above form with η > δ,
then the power series must vanish. Similarly as in 1. this can now be seen as a
special case of the Pólya gap theorem (see [23], [14, p. 3]).
3. According to symmetry (replace ϕ by ϕ(1/z)/z) the conditions on Nϕ+ can
be replaced by the same conditions on Nϕ− .

18



4.4 Corollary. Let U ⊂ C∗ be a spherical domain. Each of the following
conditions is sufficient for injectivity of T±ϕ :

1. d(Nϕ+) = 0

2. d∗(Nϕ+) = δ < 1 and U contains a keyhole domain Wr,R(η) for some
η > δ (and some 0 < r < R <∞).

As a dual version of Theorem 4.2 we get

4.5 Theorem. Let Ω be spherically open and let U ⊂ C∗ be open and so that
Ω ∗ U has simply connected components. If δ := d∗(Nϕ+) < 1 then Tϕ has
dense range if every open set V ⊃ Ω∗U∗ contains a spherically open W such
that B∗δ ∗W is connected.

Proof. We show that the transposed operator is injective.
Let [(g, V )](Ω∗U∗)± ∈ H((Ω∗U∗)±) with [(g ∗ ϕ, V ∗ Ω)](U∗)± = [0](U∗)± . Then
g ∈ HNϕ+ (V±). Since Ω∗U∗ is connected we can choose V to be connected too.

Then Theorem 4.2 (with V instead of U) shows that g = 0 on V and thus T ′ϕ is
injective. �

4.6 Corollary. Let Ω be spherically open and let U be open and so that Ω ∗U
has simply connected components. Each of the following conditions is sufficient
for Tϕ to have dense range

1. d(Nϕ+) = 0.

2. d∗(N+
ϕ ) = δ < 1 and Ω ∗ U omits a closed cone {z : | arg(z)| ≥ π(1 − δ)}

of opening 2πδ.

4.7 Example. We consider the spherical domain Ω := C∗ \ {−2, 1} (not being
of the form ΩK for some K ∈ K) and the function ϕ ∈ H(Ω) given by

ϕ(z) :=
1

1− z
+

1

2 + z
(z ∈ C∗ \ {−2, 1}).

Here we have Nϕ+ = ∅. Corollary 4.4 yields that T±ϕ : H(C∗ \ {1}) → H(Ω) is
injective and Corollary 4.6 shows that Tϕ : H(C−)→ H(C\R) has dense range.

4.8 Remark. We briefly consider the one-sided cases as in Remark 4.1. From
(7) and (8) it follows immediately that (for arbitrary spherically open Ω and
arbitrary U so that U ∪{0} is open) the condition Nϕ+ = ∅ is necessary for T+

ϕ

to have dense range. Similarly, Nϕ− = ∅ is a necessary condition for T−ϕ to have
dense range. As an application of Runge’s approximation theorem we get

• If (Ω ∗ U)+ has simply connected components, then T+
ϕ has dense range

if and only if Nϕ+ = ∅.

• If (Ω ∗ U)− has simply connected components, then T−ϕ has dense range
if and only if Nϕ− = ∅.
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The results show that the questions concerning injectivity and denseness of the
range are easy to answer in the one-sided cases T+

ϕ and T−ϕ (at least under
certain natural conditions on U and Ω ∗ U , respectively).

Acknowledgement. The authors thank the referee for his profound and thor-
ough report, which helped to improve the presentation substantially.
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[5] Domański, P., Langenbruch, M., Representation of multipliers on spaces of
real analytic functions, Analysis (Munich) 32 (2012), 137-162.
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