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Abstract

It is known that, generically, Taylor series of functions holomorphic in
the unit disc turn out to be ”maximally divergent” outside of the disc.
For functions in classical Banach spaces of holomorphic functions as for
example Hardy spaces or the disc algebra the situation is more delicate.
In this paper, it is shown that the behaviour of the partial sums on sets
outside the open unit disc sensitively depends on the way the sets touch
the unit circle. As main tools, results on simultaneous approximation by
polynomials are proved.
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1 Introduction

Let C∞ be the extended complex plane. For an open set Ω ⊂ C∞ we denote
by H(Ω) the Fréchet space of functions holomorphic in Ω (and vanishing at ∞
if ∞ ∈ Ω) endowed with the topology of locally uniform convergence. If 0 ∈ Ω
and f ∈ H(Ω), we write

snf(z) :=

n∑
ν=0

aνz
ν

with an = an(f) = f (n)(0)/n! for the n-th partial sum of the Taylor expansion∑∞
ν=0 aνz

ν of f about 0. A classical question in complex analysis is how the
partial sums snf behave outside the disc of convergence and in particular on
the boundary of the disc. Based on Baire’s category theorem, it can be shown
that for functions f holomorphic in the unit disc D generically the sequence
(snf) turns out to be universal outside of D. For precise definitions and a large
number of corresponding results, we refer in particular to the expository article
[21]. For results on universal series in a more general framework see also [2].

The second author has been supported by DFG-Forschungsstipendium JU 3067/1-1.
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The situation changes if we consider classical Banach spaces of holomorphic
functions. Our aim is to study the generic behaviour of the Taylor sections
snf outside of the open unit disc for functions in Hardy spaces and in the disc
algebra.

2 Taylor series of functions in Hardy spaces

Let m denote the normalized arc length measure on the unit circle T. For
1 ≤ p <∞, the Hardy space (Hp, || · ||p) is defined as the (Banach) space of all
f ∈ H(D) such that

||f ||p := sup
0<r<1

(∫
T
|fr|pdm

)1/p

<∞ ,

where fr(z) := f(rz) for z ∈ D. It is well known that each f ∈ Hp has
nontangential limits f∗(z) at m-almost all z on the unit circle T and that f∗ ∈
Lp(T). Moreover, the mapping f 7→ f∗ establishes an isometry between Hp and
the closure of the polynomials in Lp(T). As usual, we identify f and f∗ and,
in this way, Hp and the corresponding closed subspace of Lp(T). In particular,
the restrictions snf |T of the partial sums of the Taylor expansion of f are the
partial sums of the Fourier expansion of f . For proofs of the above results and
further properties we refer to [11] and [26].

According to the classical Carleson-Hunt theorem, for each p > 1 and each
f ∈ Hp the partial sums snf converge to f almost everywhere on T. Due
to results of Kolmogorov, in the case p = 1 we have convergence in measure
and therefore, in particular, each subsequence of (snf) has a subsubsequence
converging almost everywhere to f . Recently, Gardiner and Manolaki ([15])
have shown that, for general functions f ∈ H(D), under the mere assumption
of existence of a nontangential limit function f∗ almost everywhere on a subarc
of T, no limit function differing from f∗ on a set of positive measure on the
corresponding arc can exist.

On the other hand, in [5] it is proved that for functions in Hp the partial
sums generically turn out to have a maximal set of limit functions on closed sets
of measure zero. In order to formulate the result more precisely, it is convenient
to say that a property is satisfied for generically many elements of a complete
metric space, if the property is satisfied on a residual set in the space. Then
Theorem 1.1 from [5] states that, for each p ≥ 1, each compact set E ⊂ T with
vanishing arc length measure and each infinite subset Λ of N0, generically many
f in Hp enjoy the property that for each continuous function g : E → C a
subsequence of (snf)n∈Λ tends to g uniformly on E.

Our aim is to consider, more generally, compact sets E ⊂ C \ D. As usual,
for E compact in C we write

A(E) := {h ∈ C(E) : h holomorphic in E0}.

According to Mergelyan’s Theorem, for E with connected complement, A(E) is
the closure of the set of polynomials in C(E), where C(E) is endowed with the
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uniform norm || · ||E .

We denote D∗ := C∞ \ D. For compact sets E ⊂ D∗ with connected com-
plement, it is known that that generically many functions f in Hp – and even
in the (smaller) disc algebra A(D) – have the property that the set of partial
sums {snf |E : n ∈ N} is dense in A(E) (see e.g. [21, Theorem 4.2]). In view of
Theorem 1.1 from [5] mentioned above, a reasonable guess would be that this
also holds for E ⊂ C \D with connected complement and touching T in a set of
vanishing m-measure. It turns out that this in not true:

Theorem 2.1. Let 1 ≤ p <∞ and let E ⊂ C\D compact such that E contains
a rectifiable arc γ : [0, 1] → C \ D with γ({0, 1}) ⊂ T and γ(0) 6= γ(1). Then
there does not exist an f ∈ Hp such that the set {snf |E : n ∈ N} is dense in
A(E).

Proof. The proof follows the main idea of the proof of the claim in [1] on p. 241.
We write Bδ(a) for the closed disk about a of radius δ.

Let f ∈ Hp and let F ∈ H(D) denote an antiderivative of f . From f ∈ Hp ⊂
H1 it follows that F extends continuously to D (see e.g. [11, Theorem 3.11]).
Denoting by (σn) the Cesàro means of (sn) and writing wj := γ(j) for j = 0, 1,
we conclude from Fejér’s theorem that σnF (wj) converges to lj := F (wj), for
j = 0, 1. Moreover, we have

σnF (z) = snF (z)− z

n+ 1
sn−1f(z) (z ∈ C) (1)

(cf. [1, p. 241]), and due to f ∈ Hp we obtain snf(wj) = O(n1/p), j = 0, 1
(see e.g. [3, p. 388]). Hence, there exists some r > 0 such that both sequences
(wj · sn−1f(wj)/(n+ 1))n∈N are bounded by r. We now fix a polynomial p with∫

γ

p(z)dz /∈ B2r(l1 − l0).

Assuming that the set {snf |E : n ∈ N} is dense in A(E), there would exist a
strictly increasing sequence (nk) of positive integers such that

‖snk−1f − p‖γ([0,1]) → 0.

Integrating along γ, we would obtain

snk
F (w1)− snk

F (w0)→
∫
γ

p(z)dz.

Furthermore, it would follow from equation (1) and the subsequent consider-
ations that there exist a q0 ∈ Br(0) and a subsequence (mk) of (nk) with
smk

F (w0)→ l0 + q0. Analogously, we could find some q1 ∈ Br(0) and a subse-
quence (tk) of (mk) with stkF (w1)→ l1 + q1. Hence, we would obtain

stkF (w1)− stkF (w0)→ l1 + q1 − (l0 + q0)
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and thus ∫
γ

p(z)dz = l1 + q1 − (l0 + q0) ∈ B2r(l1 − l0),

a contradiction.

Remark 2.2. The proof of Theorem 2.1 simplifies in case of p > 1 because
in this situation, it follows from snf(wj) = O(n1/p) that we have convergence
snF (wj)→ lj for j = 0, 1 (cf. equation (1)).

Theorem 2.1 shows that even for nice compact sets E touching T in only
two points as e.g. E := {z : |z − 1| = 1} \ D, the subarc of |z − 1| = 1 lying
outside the unit disc, we do not have denseness of the partial sums snf |E in
A(E) = C(E) for any f ∈ Hp. This raises the question which extra conditions
on E guarantee universality of (snf |E) for generic f ∈ Hp.

According to the Cantor-Bendixson theorem (see, e.g. [23, Theorem 6.4]),
each compact set A ⊂ C can be decomposed in unique way as union of a perfect
set, the so-called perfect kernel of A, and a countable set. For compact E ⊂ C\D
and ζ ∈ E ∩ T we write CE(ζ) for the component of E that contains ζ and PE
for the union of all CE(ζ) with ζ ranging over the perfect kernel of E ∩ T. We
say that E satisfies the kernel condition if PE has vanishing area measure and
if, in addition, the set of all ζ ∈ E∩T with the property that CE(ζ) has positive
area measure has positive distance to the perfect kernel of E ∩ T.

With that we can state our main result:

Theorem 2.3. Let 1 ≤ p <∞ and E a compact subset of C \ D that has con-
nected complement in C and satisfies the kernel condition. Moreover, suppose
that no component of E touches T in more than one point and that E ∩ T has
vanishing arc length measure. Then for all infinite sets Λ ⊂ N0 generically many
f in Hp enjoy the property that for each g ∈ A(E) a subsequence of (snf)n∈Λ

tends to g uniformly on E.

We give examples illustrating the conditions imposed on E in Theorem 2.3.
According to the above considerations, the condition that E∩T has vanishing arc
length measure turns out to be necessary and the condition that no component
of E touches T in more than one point is at least a natural one. We do not
know if the kernel condition is necessary in any sense. Note, however, that this
condition is not very restrictive. It is satisfied in particular if the perfect kernel
of E∩T is empty, which means that E∩T is countable, and if PE has vanishing
area measure and no component CE(ζ) has positive area measure.

Examples 2.4. 1. Let C be the classical Cantor (1/3)-set in [0, 1] and let Cn
be the n-th iterate of the Cantor set, that is,

Cn :=

3n−1−1⋃
k=0

([
3k

3n
,

3k + 1

3n

]
∪
[

3k + 2

3n
,

3k + 3

3n

])
.
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For the set
E := e2πiC ∪

⋃
n∈N

(1 + 1/n)e2πiCn

we have PE = e2πiC and E satisfies the conditions of Theorem 2.3. By ”blowing
up” the arcs of (1 + 1/n)e2πiCn to small sectors, E can be modified in such a
way that each component of E lying in D∗ has nonempty interior.

2. (”Cantor sun”) For the compact set

E := [1, 2]e2πiC

we have PE = E and E satisfies the conditions of Theorem 2.3. The same
remains true if one adds further disjoint compact parts to E that lie in D∗ and
have connected complement.

3. If E consists of countably many pairwise disjoint closed discs, each of
which touches T in one point, then PE = ∅ and E satisfies the conditions of
Theorem 2.3. Again, the same remains true if one adds further disjoint compact
parts to E that lie in D∗ and have connected complement.

4. If E consists of the Cantor sun and countably many pairwise disjoint
closed discs, each of which touches T in one point, and all lying in a sector
| arg(−z)| ≤ α, for some α < π/3, then E still satisfies the assumptions of
Theorem 2.3. This is no longer true for α = π/3.

The proof of Theorem 2.3 is based on results on simultaneous approximation
by polynomials. For the case of sets E in T, this goes back to Havin ([18], see
also [20]). We consider Banach spaces X = (X, || · ||X) with X ⊂ L1(σ) for some
Borel set M = MX ⊂ C and some finite Borel measure σ = σX supported on
M . Moreover, we always suppose that the polynomials are dense in X and that

rX := lim sup
n→∞

||Pn||1/nX <∞

with Pn(z) := zn. In the sequel, we call such spaces analytic. In particular,
analytic spaces are separable since the polynomials with (Gaußian) rational
coefficients also form a dense subset. The space Hp is analytic (with σ = m
the normalized arc length measure). If E ⊂ C is compact with connected
complement then, according to Mergelyans’s theorem, also the closed subspace
A(E) of (C(E), || · ||E) is analytic.

We write X1 ⊕ X2 for the (external) direct sum of two Banach spaces X1

and X2.

Lemma 2.5. Let X and Y be analytic, with X ⊂ H(D) and so that f 7→
an(f)Pn|MY is a continuous linear mapping from X to Y for all n. If the pairs
(P, P ) := (P |MX , P |MY ), where P ranges over the set of polynomials, form a
dense set in the sum X ⊕ Y , then for all infinite sets Λ ⊂ N0 generically many
f in X enjoy the property that for each g ∈ Y a subsequence of (snf)n∈Λ tends
to g in Y .
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Proof. We consider the family (sn)n∈Λ (more precisely f 7→ snf |MY ) of contin-
uous linear mappings from X to Y . As mentioned above, Y is separable. The
Universality Criterion (see e.g. [16, Theorem 1] or [17, Theorem 1.57]) implies
that it is sufficient – and necessary – to show that for each pair (f, g) ∈ X ⊕ Y
and each ε > 0 there exist a polynomial P and an integer n ∈ Λ so that
||f − P ||X < ε and ||g − snP ||Y < ε. Since snP = P for all polynomials P and
all large n (depending on the degree of P ), it suffices to show that the pairs of
the form (P, P ), where P ranges over the set of polynomials, form a dense set
in X ⊕ Y .

In view of Lemma 2.5, Theorem 2.3 is an immediate consequence of the
following result on simultaneous polynomial approximation.

Theorem 2.6. Let 1 ≤ p <∞ and E a compact subset of C \ D that has con-
nected complement in C and satisfies the kernel condition. Moreover, suppose
that no component of E touches T in more than one point and that E ∩ T has
vanishing arc length measure. Then the pairs (P, P ), where P ranges over the
set of polynomials, form a dense set in Hp ⊕A(E).

The remaining part of the section is devoted to the proof of Theorem 2.6.

Let X be analytic. By X ′ we denote the (norm) dual of X and by H(∞)
the linear space of germs of functions holomorphic (and vanishing) at ∞. Then
the Cauchy transform KX : X ′ → H(∞) with respect to X is defined by

(KXφ)(w) =

∞∑
ν=0

φ(Pν)/wν+1 (|w| > rX , φ ∈ X ′).

Since the polynomials form a dense set in X, the Hahn-Banach theorem implies
that KX is injective. Then the range R(KX) of KX is the so-called Cauchy
dual of X. The following consequence of the Hahn-Banach theorem (cf. [20,
Theorem 1.2]) is the basis of our subsequent considerations.

Lemma 2.7. Let X and Y be analytic. Then R(KX) ∩ R(KY ) = {0} if and
only if the pairs (P, P ), where P ranges over the set of polynomials, form a
dense set in the sum X ⊕ Y .

Proof. Consider a functional (φ, ψ) ∈ (X ⊕ Y )′ = X ′ ⊕ Y ′. Then we have

0 = (φ,−ψ)(Pn, Pn) = φ(Pn)− ψ(Pn)

for all n ∈ N0 if and only if KXφ = KY ψ.
If R(KX) ∩ R(KY ) = {0} then KXφ = KY ψ = 0. Since KX and KY are

injective, we obtain that (φ, ψ) = (0, 0). Then the denseness of the span of the
(Pn, Pn) follows from the Hahn-Banach theorem.

If, conversely, the span of (Pn, Pn) is dense in X ⊕ Y and if φ and ψ are so
that KXφ = KY ψ, then the Hahn-Banach theorem implies that (φ,−ψ) = (0, 0)
and thus also KXφ = KY ψ = 0.
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In order to apply the lemma we need more information about the Cauchy
transforms involved.

Let E ⊂ C be compact with connected complement. The Riesz repre-
sentation theorem says that C(E)′ is isometrically isomorphic to the space of
complex Borel measures supported on E and endowed with the total variation
norm. If we identify ψ ∈ C(E)′ with the corresponding Borel measure µ, then
µ(Pn) =

∫
E
ζndµ(ζ), for all n ∈ N0. Since A(E) is a subspace of C(E), the

Hahn-Banach theorem implies that each ψ ∈ A(E)′ can also be represented by
some µ (not uniquely, however). If µ is an arbitrary representing measure of ψ,
the Cauchy transform of ψ is the germ given by

(Kψ)(w) := (KA(E)ψ)(w) =

∫
E

dµ(z)

w − z
(w ∈ C∞ \ E).

Similarly, according to φ(f) =
∫
T fhdm (f ∈ Lp(T)) we may identify φ ∈

(Lp(T))′ with a unique function h ∈ Lq(T), where q is the conjugate exponent
of p (i.e. pq = p + q for p > 1 and q = ∞ for p = 1). Again, in this way each
φ ∈ (Hp)′ has representations of the form hm. From this it is seen that for
φ ∈ (Hp)′

(Kφ)(w) := (KHpφ)(w) =

∫
T

h(z)

w − z
dm(z) (w ∈ D∗),

where hm is any representing measure. It is known (cf. [8] or [11]) that for
p > 1 the Cauchy dual of Hp is given by Hq

0 (D∗) in the sense that each germ
Kφ in R(KHp) is given by a function Φ ∈ Hq

0 (D∗), where

Hq
0 (D∗) := {g ∈ H(D∗) : w 7→ w−1g(w−1) ∈ Hq}.

More precisely, if φ is represented by hm, it turns out that

Φ(w) = w−1(Ph)(w−1),

where P : Lq(T)→ Hq denotes the Riesz projection operator. In a similar way,
for p = 1, the Cauchy dual is given by the space BMOA.

For E ⊂ C \D compact with connected complement in C, let UE denote the
Runge hull of the component G of D∗ \E containing ∞, that is, the union of G
and the compact components of D∗ \G. Then UE is a simply connected domain
in C∞ containing ∞.

Lemma 2.8. Let E ⊂ C \ D be compact with connected complement in C. If
ψ ∈ A(E)′ is so that there exists a function Φ ∈ H(D∗) satisfying Φ = Kψ near
∞, then for each representing measure µ of ψ we have

ψ(Pn) =

∫
E

zndµ(z) =

∫
E\UE

zndµ(z) (n ∈ N0),

that is, 1E\UE
µ is a representing measure for ψ with support in E \ UE.
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Proof. As mentioned above, UE is a simply connected domain in C∞ containing
∞. Let (γj) be a sequence of piecewise smooth Jordan curves in D∗ \E so that
the interior domains int(γj) of γj decrease to C∞ \ UE . The existence of such
a sequence (γj) follows from the existence of a nested exhaustion of D∗ \ E by
domains Gj bounded by finitely many piecewise smooth Jordan curves. Then
γj may be taken to be the part of the boundary of Gj containing C∞ \ UE in
its interior.

We set Ej := E ∩ int(γj). Supposing the curves γj to be positively oriented,
Fubini’s and Cauchy’s theorems show that, for n ∈ N0, j ∈ N, and R sufficiently
large,

2πi

∫
E

zndµ(z) =

∫
E

∫
|ζ|=R

ζn

ζ − z
dζ dµ(z) =

∫
|ζ|=R

ζnKψ(ζ)dζ

=

∫
|ζ|=R

ζnΦ(ζ)dζ =

∫
γj

ζnΦ(ζ)dζ =

∫
γj

ζnKψ(ζ)dζ

=

∫
E

∫
γj

ζn

ζ − z
dζ dµ(z) = 2πi

∫
Ej

zndµ(z) .

Since Ej decreases to E \UE , Lebesgue’s dominated convergence theorem shows
that

ψ(Pn) =

∫
E

zndµ(z) =

∫
E\UE

zndµ(z) (n ∈ N0).

Lemma 2.9. Let E be a compact subset of C\D with connected complement in
C. If X is an analytic space with rX ≤ 1, then the set {(P, P ) : P polynomial}
is dense in X ×A(E) if (and only if) it is dense in X ×A(E \ UE).

Proof. Let φ ∈ X ′ and ψ ∈ A(E)′ with representing measure µ and so that
Kφ = Kψ. Since rX ≤ 1, there is a function Φ ∈ H(D∗) with Φ = Kφ(=
Kψ) near ∞. According to Lemma 2.8, the Borel measure ν := 1E\UE

µ is
a representing measure for ψ having support in E \ UE . Hence, ν defines a
continuous linear functional on A(E \ UE) with Cauchy transform Kψ. From
the assumption and Lemma 2.7 it follows that Kψ = Kφ = 0 and then a further
application of Lemma 2.7 implies the statement.

Proof of Theorem 2.6. Since Hp is densely and continuously embedded into
H1, for all p > 1, we can restrict to the case p > 1. As usual, for closed A ⊂ T
and A(0) := A we write A(n+1) for the Cantor-Bendixson derivative of A(n),
that is, the set of limit points of A(n).

Due to Lemmas 2.5, 2.7, and 2.9, it suffices to show that for E1 := E \ UE

R(KHp) ∩R(KA(E1)) = {0}.

To this aim, we consider φ ∈ (Hp)′ and ψ ∈ A(E1)′ represented by hm and
µ, respectively, and satisfying Kφ = Kψ in H(∞). Then Kφ is the germ of
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a function Φ ∈ H(D∗) and Kψ is the germ of a function Ψ ∈ H(C∞ \ E1).
Since no component of E1 meets T in more than one point, there is a common
holomorphic extension to C∞ \ (E ∩ T), which we also denote by Φ.

By QE we denote the closure of the union of all components CE(ζ) that have
positive area measure. As a consequence of the Sura-Bura Theorem and the
second requirement of the kernel condition, QE and PE have positive distance.
Since PE has vanishing area measure, by a well known result of Carleson (see,
e.g. [14, Chapter II, Theorem 8.2]), the support of µ is restricted to (E∩T)∪QE .

Moreover, the Cauchy integral Kψ defines a locally integrable function with
respect to plane area measure (see e.g. [10, pp. 192]). Hence, Φ|D = Kψ|D
is integrable with respect to area measure. Since functions in Hq

0 (D∗) are in
particular locally integrable with respect to area measure, this shows that Φ is
locally integrable with respect to plane area measure. But then, by estimating
the Laurent coefficients, it can be shown that Φ can have only poles of first order
or removable singularities at isolated points of E ∩ T (cf. [9, p. 112, Exercise
17]). The fact that Φ ∈ Hq

0 (D∗) rules out the case of poles, so that Φ extends
to a function holomorphic in C∞ \ (E ∩ T)(1). By induction, Φ extends to a
function holomorphic in C∞ \ (E ∩T)(n), for all n ∈ N. Since E ∩T is compact,
we have

⋂
n∈N(E ∩T)(n) = F , where F denotes the perfect kernel of E ∩T (see

e.g. [23, Theorem (6.11) and the subsequent considerations]). By a similar (but
simpler) argument as in the proof of Lemma 2.8 this implies that 1Fµ is also a
representing measure for ψ.

Since Kφ = Kψ, the measure ν := 1Fµ − hm with support in T satisfies
ν(Pn) = 0 for all n ∈ N0. The F. and M. Riesz theorem then implies that ν
is absolutely continuous with respect to m and therefore the same is true for
1Fµ. On the other hand, since m(F ) = m(E ∩ T) = 0, the measure 1Fµ is
singular with respect to m. This shows that 1Fµ = 0 and from that we obtain
Kφ = Kψ = 0. �

3 Taylor series of functions in the disc algebra

We consider the disc algebra A(D) = {f ∈ C(D) : f |D holomorphic}. As already
indicated above, it is known that generically many functions in the disc algebra
satisfy the property that {snf |E : n ∈ N0} is dense in A(E) for all compact sets
E ⊂ D∗ with connected complement (see e.g. [21, Theorem 4.2]).

According to Fejér’s theorem, the Taylor series of each function f ∈ A(D) is
Cesàro summable to f on T, that is, the Cesàro means σnf of the snf converge
to f on T (even uniformly). As a consequence, for functions f ∈ A(D) the limit
behaviour of the sequence of partial sums (snf) on sets E ⊂ C\D touching T is
significantly more restricted than in the case of functions in the Hardy spaces.
In the first result we will show now that even pointwise universality does not
appear on sets E touching T in a single point and not being negligible in the
sense of logarithmic capacity outside the closed unit disc.

Let f ∈ H(D) with f(z) =
∑∞
ν=0 aνz

ν for z ∈ D. If (nk) is a strictly
increasing sequence in N we say that f has Hadamard-Ostrowski gaps relative
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to (nk) if a sequence of integers (pk) with the following properties exists:

• nk−1 ≤ pk < nk and lim supk→∞ pk/nk < 1,

• If J is the set of integers ν with pk < ν ≤ nk for some k, then

lim sup
J3ν→∞

|aν |1/ν < 1.

With this notation we have

Lemma 3.1. Let f ∈ H(D) be such that the sequence ((snf(ζ)) is Cesàro
summable to s for some ζ ∈ T and let (nk) be a strictly increasing sequence
in N. If f has Hadamard-Ostrowski gaps relative to (nk) and if (snk

f(ζ))k
converges then the limit equals s.

Proof. Let (pk) and J be as above. Then the power series

g(z) :=
∑
ν∈J

aνz
ν

has radius of convergence > 1. If f0 := f − g, then the Taylor coefficients of f0

vanish for pk < ν ≤ nk. This implies that snf0 = snk
f0 for all pk < n ≤ nk.

If c denotes the limit of (snk
f(ζ))k then the sequence (snk

f0(ζ))k converges
to c0 := c − g(ζ). Moreover, the Cesàro means σnf0(ζ) tend to s0 := s − g(ζ),
as n → ∞. Passing to a subsequence of (nk) we may suppose that (pk/nk)
converges to some α < 1. Then we have

σnk
f0(ζ) =

pk
nk
σpkf0(ζ) + (1− pk

nk
)snk

f0(ζ)

and the left hand side converges to s0 and the right hand side to αs0 +(1−α)c0,
as k →∞. This implies c0 = s0 and thus c = s.

As a consequence we obtain

Theorem 3.2. Let f ∈ A(D) and let E ⊂ C \ D. If E ∩ T 6= ∅ and if a
subsequence of (snf) converges pointwise on E to a function h with h(ζ) 6= f(ζ),
for some ζ ∈ E ∩ T, then E ∩ D∗ has vanishing logarithmic capacity.

Proof. According to the assumptions, f has radius of convergence 1. Suppose
that E ∩ D∗ has positive logarithmic capacity. Then the set D ∪ E has log-
arithmic capacity > 1. Let (nk) be a sequence of integers such that (snk

f)k
converges to a function h pointwise on E. From Theorem 1 in [4] it follows that
f has Hadamard-Ostrowski gaps relative to (nk). Thus, Lemma 3.1 implies that
h(ζ) = f(ζ) for all ζ ∈ E ∩ T.

In contrast, we have

Theorem 3.3. Let E ⊂ C \ D be a countable set. Then, for each infinite set
Λ ⊂ N0, generically many f ∈ A(D) enjoy the property that for each function
h : E → C there is a subsequence of (snf)n∈Λ converging pointwise to h on E.
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This result is stated in [19] for sets E ⊂ T (and for Λ = N0). The proof is
based on Landau’s functions. We give an alternative proof, also for the more
general case of E ⊂ C \ D, based on the Fejér polynomials Fn given by

Fn(z) :=

(
1

n
+

z

n− 1
+ . . .+

zn−1

1

)
−
(
zn+1

1
+
zn+2

2
+ . . .+

z2n

n

)
.

The Fejér polynomials have the property that the uniform norms ||Fn||T are
bounded, that is,

sup
n∈N
‖Fn‖T <∞ ,

while snFn(1) → ∞ as n → ∞. An elementary proof of the boundedness
property of the uniform norms is found in [13].

Of course, different to the situation in the preceding section, we cannot ex-
pect any result on simultaneous approximation by polynomials in A(D)⊕C(E),
even for finite sets E touching T. If we allow approximation by polynomials P
and partial sums snP , the situation is more favourable.

Theorem 3.4. Let E ⊂ C \D be a finite set and Λ ⊂ N0 an infinite set. Then
for each c ∈ CE, each polynomial Q and each ε > 0, a polynomial P and a
positive integer n ∈ Λ exist with

‖Q− P‖D < ε and snP |E = c.

Proof. 1. We first prove: If B ⊂ C \ {1} is finite with cardinality m, then a
sequence (Pn) of polynomials exists with ‖Pn‖D → 0, as n→∞, and

snPn|B = 0, (snPn)(1) = 1 (n > m).

With Fn the n-th Fejér polynomial we define

Fn,m(z) := Fn(z)−
n−1∑

ν=n−m

zν

n− ν
=

n−m−1∑
ν=0

zν

n− ν
−

2n∑
ν=n+1

zν

ν − n

for z ∈ C and n > m. Since (||Fn||D)n is bounded, also (‖Fn,m‖D)n>m is
bounded. Moreover, we have

(snFn,m)(1) =

n∑
k=m+1

1

k
→∞ (n→∞).

We define QB(z) :=
∏
w∈B

(z − w) for z ∈ C and

Pn :=
1

QB(1)(snFn,m)(1)
·QB · Fn,m (n > m).

Then ‖Pn‖D → 0, as n → ∞. Since Fn,m does not contain any of the powers
zn−m, . . . , zn, we further obtain

snPn =
QB

QB(1)(snFn,m)(1)
· snFn,m

11



and thus snPn|B = 0 as well as (snPn)(1) = 1 for all n > m.
2. We put d := c−Q|E. If

0 < δ <
( ∑
w∈E
|d(w)|

)−1
ε,

then part 1 of the proof, applied to Bw := w−1(E \ {w}) for w ∈ E, shows that
an integer n ∈ Λ with n ≥ degQ and polynomials Pw = Pn,w, for w ∈ E, exist
with ‖Pw‖D < δ and

snPw|Bw = 0, (snPw)(1) = 1.

Since |w| ≥ 1, we obtain that Qw := Pw(·/w) also satisfies ‖Qw‖D < δ and in
addition

snQw|(E \ {w}) = 0, (snQw)(w) = 1.

If we define
P := Q+

∑
w∈E

d(w) ·Qw,

then
‖P −Q‖D ≤

∑
w∈E
|d(w)| ‖Qw‖D < ε

and from n ≥ degQ we get snQ = Q. Hence, we have

(snP )(w) = Q(w) +
∑
w′∈E

d(w′)snQw′(w) = Q(w) + d(w) = c(w)

for all w ∈ E.

Proof of Theorem 3.3. Let first E ⊂ C \ D be a finite set. We consider the
sequence (Tn)n∈Λ of (continuous) linear mappings Tn : A(D)→ CE , defined by

Tnf := snf |E (f ∈ A(D)).

According to Fejér’s theorem, the polynomials are dense in A(D). Therefore,
the polynomial Q in Theorem 3.4 may be replaced by an arbitrary function
g ∈ A(D). According to the Universality Criterion (note that A(D) is separable),
for generically many functions f ∈ A(D) the set of partial sums {snf |E : n ∈ Λ}
is dense in CE .

If E = {ζj : j ∈ N} is countable and if Ek := {ζ1 . . . , ζk}, then Baire’s the-
orem implies that also generically many functions f ∈ A(D) have the property
that for all k the set of partial sums {snf |Ek : n ∈ Λ} is dense in CEk . For such
f and arbitrary h : E → C, a strictly increasing sequence (nj) in Λ exists with

|snj
f(ζ)− h(ζ)| < 1/j (ζ ∈ Ej).

Then snjf → h, as j →∞, pointwise on E. �
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In view of Theorems 3.2 and 3.3, one might ask about compact sets E ⊂ C\D
with E ∩ T 6= ∅ and functions f ∈ A(D) having the property that for each
h ∈ A(E) there exists a subsequence of (snf) converging uniformly to h on E.

In [7] (cf. also [25]) it is shown that sets E ⊂ T having the property that a
function f ∈ A(D) exists with {snf |E : n ∈ N} being dense in C(E) necessarily
have to be small in the sense of porosity. In particular, there are countable
compact sets E ⊂ T with only one accumulation point and so that for no
function f in the disc algebra the partial sums snf form a dense set in C(E).
Actually, simple examples of sets E having this property are given by E =

{e2πi/qk : k ∈ N}, for arbitrary q > 1. In case of compact sets E lying outside
the open unit disc and having an accumulation point on T the following result
follows from [22, Corollary 3.3] and Fejér’s theorem:

Proposition 3.5. Let E ⊂ C\D compact and let ζ ∈ E∩T such that E contains
a sequence (zn) with zn = ζ(1 + 1/n)eiαn and αn = O(1/n). Then there does
not exist an f ∈ A(D) such that the set {snf |E : n ∈ N0} is dense in A(E).

Proposition 3.5 differs from Corollary 3.3 in [22] only in view of the fact
that it provides a sufficient condition concerning the speed of convergence of
the radii of the sequence (zn) in order to obtain non-universality of the Taylor
series of f on E.

We will show that, on the other hand, uniform universality happens gener-
ically. In order to formulate the corresponding results, we introduce the fol-
lowing notation: for a metric space X we denote by K(X) the metric space of
all nonempty compact subsets of X endowed with the Hausdorff metric. It is
well-known that K(X) is complete whenever X is complete (see e.g. [12], Section
2.4).

Theorem 3.6. For each closed set B ⊂ C \ D and each infinite set Λ ⊂ N0,
generically many f ∈ A(D) enjoy the property that {snf |E : n ∈ Λ} is dense in
C(E) for generically many E ∈ K(B).

Proof. The proof will run similarly to the proof of Lemma 2 in [24]. We fix a
countable dense subset C of B and we denote E := {E ⊂ C : E finite}. Then E
is countable and dense in K(B). For f ∈ A(D), we define

Kf :=
{
E ∈ K(B) : {snf |E : n ∈ Λ} dense in C(E)

}
.

Denoting by P the set of all complex-valued polynomials in two real variables
with Gaußian rational coefficients, the complex Stone-Weierstraß theorem im-
plies that the set {P |K : P ∈ P} is dense in C(K) for each K ∈ K(C). Hence,
we obtain

Kf =
⋂
j∈N
P∈P

⋃
n∈Λ

{
E ∈ K(B) : ‖snf − P‖E <

1

j

}
.

As each function snf − P is uniformly continuous on E, it follows that each
set {E ∈ K(B) : ‖snf − P‖E < 1/j} is open in K(B) so that Kf is a Gδ-set
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in K(B). Due to Theorem 3.3, there exists a residual set R in A(D) such that
E ⊂ Kf for all f ∈ R. Thus, for generically many f ∈ A(D), the set Kf is a
dense Gδ-set and hence in particular residual in K(B).

Remark 3.7. For fixed R > 1 we consider B = T ∪ {z : |z| ≥ R}. It is known
that generically many sets in K(B) are Cantor sets, i.e. perfect and totally
disconnected (cf. [4], Remark 2 on p. 236). Thus, for generically many f ∈ A(D)
Theorem 3.6 guarantees the existence of compact sets E ⊂ C \ D with both
E ∩ T and E ∩ D∗ being uncountable and such that {snf |E : n ∈ N0} is dense
in C(E). According to Theorem 3.2, for such sets we necessarily have E0 = ∅
(and then C(E) = A(E)).

Since [21, Theorem 4.2] shows that generically many functions in the disc
algebra also satisfy the property that {snf |E : n ∈ N0} is dense in A(E) for all
compact sets E ⊂ D∗ with connected complement, it turns out that generically
many f enjoy both universality properties simultaneously.

In the statement of Theorem 3.6, the second “generically many”-expression
depends on the first one, meaning that the residual subset of K(B) depends on
the choice of a function from the residual subset of A(D). This dependence can
be interchanged:

Corollary 3.8. For each closed set B ⊂ C \ D and each infinite set Λ ⊂ N0,
generically many E ∈ K(B) enjoy the property that {snf |E : n ∈ Λ} is dense
in C(E) for generically many f ∈ A(D).

Proof. We denote X := K(B), Y := A(D) and

S :=
{

(E, f) ∈ K(B)×A(D) : {snf |E : n ∈ Λ} dense in C(E)
}
.

Then X and Y are Baire spaces, Y is second-countable and S is a subset of
X × Y . In the following, for E ∈ K(B) and f ∈ A(D), we write S(E, ·) := {f ∈
A(D) : (E, f) ∈ S} and S(·, f) := {E ∈ K(B) : (E, f) ∈ S}. Denoting by P the
set of all complex-valued polynomials in two real variables with Gaußian rational
coefficients, the complex Stone-Weierstraß theorem implies, analogously to the
proof of Theorem 3.6, that we have

S(E, ·) =
{
f ∈ A(D) : {snf |E : n ∈ Λ} dense in C(E)

}
=

⋂
j∈N
P∈P

⋃
n∈Λ

{
f ∈ A(D) : ‖snf − P‖E <

1

j

}

for all E ∈ K(B). Hence, S(E, ·) is a Gδ-set in Y for all E ∈ X. According to
Theorem 3.6, we have that

S(·, f) =
{
E ∈ K(B) : {snf |E : n ∈ Λ} dense in C(E)

}
is residual in X for generically many f ∈ Y (see also the proof of Theorem
3.6, where we have S(·, f) = Kf ). Thus, Lemma 3.1 in [7] implies that the set
S(E, ·) is residual in Y for generically many E ∈ X.
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Rev. Mat. Complut. 19 (2006), 235-247.

[2] F. Bayart, K. -G. Grosse-Erdmann, V. Nestoridis and C. Papadimitropou-
los, Abstract theory of universal series and applications, Proc. Lond. Math.
Soc. 96 (2008), 417-463.

[3] F. Bayart and Y. Heurteaux Multifractal analysis of the divergence of
Fourier series: the extreme cases, J. Anal. Math. 124 (2014), 387-408.

[4] H.-P. Beise, T. Meyrath, J. Müller, Universality properties of Taylor series
inside the domain of holomorphy, J. Math. Anal. Appl. 383 (2011), 234-
238.

[5] H.-P. Beise, J. Müller, Generic boundary behaviour of Taylor series in
Hardy and Bergman spaces, Math. Z, 284 (2016), 1185-1197.

[6] C.A. Berenstein, R. Gay, Complex analysis and special topics in harmonic
analysis, Springer, New York, 1995.
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Cesàro summability, Comput. Methods Funct. Theory, 12 (2012), 419-448.

[23] A.S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.

[24] J. Müller, Continuous functions with universally divergent Fourier series
on small subsets of the circle, C. R. Math. Acad. Sci. Paris, 348 (2010),
1155-1158.

[25] Ch. Papachristodoulos, M. Papadimitrakis, On universality and conver-
gence of the Fourier series of functions in the disc algebra, to appear in J.
Anal. Math., arXiv:1503.03426v2.

[26] W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, 1987.

Addresses:
George Costakis
Department of Mathematics and Applied Mathematics, University of Crete,
700 13 Heraklion, Crete, Greece
e-mail: costakis@uoc.gr
Andreas Jung, Jürgen Müller
University of Trier, FB IV, Mathematics
54286 Trier, Germany
e-mail: s4anjung@uni-trier.de, jmueller@uni-trier.de

16


