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Abstract. For a family F = {fn : n ∈ N} of meromorphic functions on an

open set Ω ⊂ C, we will establish several connections between the property
that F is a universal family, i.e. that restrictions of F to suitable subsets of Ω

are dense families in the corresponding function spaces, and the property that
F is a non-normal family.

1. Introduction

Consider f : C → C to be a non-affine entire function. When studying the
dynamics of the iterates of f , concepts and notions from the theory of non-normal
families and from topological dynamics are usually intertwined (see e.g. [1, 16, 20]):
The Julia set J = J(f) is defined as the set of all z ∈ C such that the family of
iterates {f◦n : n ∈ N} is not normal at z. Montel’s theorem and the complete
invariance of J imply that the dynamical system (J, f) is topologically transitive.
Combined with Birkhoff’s transitivity theorem, this shows that for a comeagre set
of points z ∈ J the orbits {f◦n(z) : n ∈ N} are dense in J . An application of
Zalcman’s lemma then results in the basic property that the repelling periodic
points are dense in J . In turn, this implies that in the case of a polynomial f the
dynamical system is topologically exact, that is, for each non-empty relatively open
set V ⊂ J there is n ∈ N with fn(V ) = J .

In the past years, many notions from topological dynamics have been extended
to the more general framework of universality of families of functions (see e.g. [11,
2, 12]). This leads to the idea to systematically study, for families of holomorphic
or meromorphic functions, the relationship between the property of being a non-
normal family and the property of being universal. In this paper, some steps in
this direction will be done.

We start with some auxiliary results on products of families of continuous func-
tions (Section 2). In Section 3, we will focus on universality properties of sequences
of meromorphic functions that are non-normal on open sets. Subsequently, Section
4 provides assumptions under which sequences of meromorphic functions that are
non-normal on more general sets have universality properties.

We recall (or introduce) some relevant notions in a general framework. For
topological spaces X,Y , we denote by C(X,Y ) the space of all continuous functions
from X to Y , which shall always be endowed with the compact-open topology. For
B ⊂ Y we say that an infinite family F ⊂ C(X,Y ) is topologically transitive with
respect to B, if for all non-empty open sets U ⊂ X and V ⊂ Y with B ∩ V 6= ∅
there exists some f ∈ F with f(U)∩V 6= ∅. Note that F is topologically transitive
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with respect to B if and only if it is topologically transitive with respect to the
closure B of B. So we consider B to be closed in the sequel. If f(U)∩V 6= ∅ holds
for cofinitely many f ∈ F , then the family is called topologically mixing with respect
to B. Moreover, we say that the family F is hereditarily transitive with respect to
B, if an infinite subfamily F0 exists with the property that each infinite subset of
F0 is topologically transitive with respect to B. In the case B = Y , the suffix with
respect to B is suppressed.

A sequence (fn) of continuous functions fn : X → Y is called universal if there
exists an element x ∈ X such that the set {fn(x) : n ∈ N} is dense in Y . Elements
with this property are called universal for (fn). We say that a property is fulfilled
for generically many elements of a complete metric space if it is fulfilled on a
comeagre subset of the space. If X is a complete metric space and Y is a separable
metric space, the Universality Criterion (see e.g. [12, Theorem 1.57]) states that
a dense set of universal elements for (fn) exists if and only if {fn : n ∈ N} is
topologically transitive. In this case, generically many elements are universal for
(fn).

Finally, in the case of metric spaces X,Y , a family F ⊂ C(X,Y ) is called
normal if each sequence in F has a subsequence which converges uniformly on each
compact subset of X. Moreover, F is called normal at a point x ∈ X if there exists
a neighbourhood W of x such that the family F|W := {f |W : f ∈ F} is normal in
C(W,Y ). If X is locally compact and has a compact exhaustion (i.e. there exists
a sequence (Kn) of compact subsets of X with X =

⋃
n∈NKn and Kn ⊂ K◦n+1

for all n ∈ N), it can be shown that normality is a local property, i.e. a family
F ⊂ C(X,Y ) is normal if and only if it is normal at each point x ∈ X (cf. [18],
Theorem 2.1.2, in case that X is a domain in C).

2. Products of families

For N ∈ N, sets X1, . . . , XN , Y1, . . . , YN , and functions fj : Xj → Yj (j =
1, . . . , N), we denote by

f1 × · · · × fN :

N∏
j=1

Xj →
N∏
j=1

Yj , (x1, . . . , xN ) 7→ (f1(x1), . . . , fN (xN ))

the N -fold product of f1, . . . , fN . In case of fj = f for all j ∈ {1, . . . , N}, we write
f×N := f1 × · · · × fN . For topological spaces X, the product XN shall always be
equipped with the product topology.

Proposition 2.1. Let X,Y be metric spaces with X locally compact, let F ⊂
C(X,Y ) and for N ∈ N consider the corresponding N -fold families

F×N :=
{
f×N : f ∈ F

}
⊂ C(XN , Y N ).

(1) If x = (x1, . . . , xN ) ∈ XN then F×N is normal at x if and only if F is
normal at x1, . . . , xN .

(2) If X has a compact exhaustion then F×N is normal if and only if F is
normal.

Proof. 1. If F×N is normal at x = (x1, . . . , xN ) then there exist open neighbour-
hoods Uj of xj (j = 1, . . . , N) such that F×N |U1×···×UN

is a normal family. But
this already implies that F is normal at each point xj . Indeed, given a sequence
(gk) in F|Uj

, there exists a sequence (fk) in F with gk = fk|Uj
for all k ∈ N.
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As (fk|U1
× · · · × fk|UN

) is a sequence in F×N |U1×···×UN
, the normality of the

family F×N |U1×···×UN
yields the existence of a strictly increasing sequence (kl) in

N such that (fkl |U1 × · · · × fkl |UN
) converges uniformly on each compact subset of

U1×· · ·×UN . Clearly, this implies that (gkl) = (fkl |Uj
) converges locally uniformly

on Uj .
If, conversely, F is normal at x1, . . . , xN then for j = 1, . . . , N there are compact

neighbourhoods Kj of xj such that F|Kj is normal. If (f×Nn ) is a sequence in F×N ,

then by a standard sub-sub-sequence argument it is seen that a subsequence (f×Nnk
)

converges uniformly on K1 × · · · ×KN . This shows that F×N is normal at x.
2. The second statement follows directly from 1. and the fact that normality is

a local property under the corresponding assumptions (cf. the consideration at the
end of Section 1). �

Remark 2.2. Considering for N ∈ N the larger families

FN := {f1 × · · · × fN : fj ∈ F for all j = 1, . . . , N} ⊂ C(XN , Y N )

the proof of Proposition 2.1 shows that, under the corresponding assumptions on
X, normality of F is also equivalent to normality of FN .

In view of Proposition 2.1, in general there is a basic difference between topo-
logical transitivity and non-normality of N -fold products of sequences of contin-
uous functions. Indeed, there exist examples of topologically transitive dynami-
cal systems (X,T ) (that is, the family of iterates {T ◦n : n ∈ N} is topologically
transitive) for which (X,T ) is not topologically weak-mixing ((X,T ) is called topo-
logically weak-mixing, if (X2, T×2) is topologically transitive). For instance, given
α ∈ R \ πQ, the circle rotation (T, f) defined by f(z) := eiαz, where T denotes
the unit circle in C, is topologically transitive but not topologically weak-mixing
(cf. [12, Example 1.43]). By the famous De la Rosa-Read theorem, there even exist
continuous linear operators T on Banach spaces X such that (X,T ) is topologically
transitive but not weak-mixing (cf. [7], see also [12, Theorem 2.43]). However, due
to Furstenberg’s theorem (see, e.g. [12, Theorem 1.51]), (XN , T×N ) is topologically
transitive for all N ∈ N if (X,T ) is topologically weak-mixing. In the sequel, we say
that a family F = {fn : n ∈ N} of continuous functions fn : X → Y is topologically
weak-mixing with respect to B ⊂ Y if F×N is topologically transitive with respect
to BN for all N ∈ N.

The Bès-Peris Theorem (see e.g. [12, Theorem 3.15]) shows that a linear system
(X,T ) is hereditarily transitive if and only if it is topologically weak-mixing. For
arbitrary families we have the following version of the Bès-Peris Theorem:

Proposition 2.3. Let X,Y be metric spaces and B ⊂ Y be a closed set. Then F ⊂
C(X,Y ) is hereditarily transitive with respect to B if and only if F is topologically
weak-mixing with respect to B.

Proof. ⇒: Let F0 = {fn : n ∈ N} ⊂ F be so that each infinite subset is transitive.
Let N ∈ N, U ⊂ XN be open and non-empty, and V ⊂ Y N open with BN ∩ V
non-empty. Then there exist non-empty and open sets U1, . . . , UN ⊂ X with U1 ×
· · · ×UN ⊂ U and V1, . . . , VN ⊂ Y with V1 × · · · × VN ⊂ V and B ∩ V1, . . . , B ∩ VN
non-empty. According to the assumption, {fn : n > m} is topologically transitive
with respect to B, for all m ∈ N. Inductively, we can find a strictly increasing
sequence (nk) in N with fnk

(U1) ∩ V1 6= ∅ for all k ∈ N. By assumption, the
family {fnk

: k ∈ N} is topologically transitive with respect to B. Thus, the same
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argument as above yields the existence of a subsequence (n
(2)
k ) of (n

(1)
k ) := (nk) with

f
n
(2)
k

(U2) ∩ V2 6= ∅ for all k ∈ N. Proceeding in the same way, for any 2 ≤ j ≤ N

we find subsequences (n
(j)
k ) of (n

(j−1)
k ) with f

n
(j)
k

(Uj) ∩ Vj 6= ∅ for all k ∈ N. In

particular, for n := n
(N)
1 , we obtain that

∅ 6= (fn(U1)× · · · × fn(UN )) ∩ (V1 × · · · × VN ) ⊂ f×Nn (U) ∩ V,
i.e. F×N is topologically transitive with respect to BN .
⇐: The proof follows along the same lines as the proof of the corresponding part

of the Bès-Peris Theorem (see e.g. [12, pp. 76]). �

3. Non-normality on large sets

We denote by C∞ the extended complex plane, which shall be endowed with
the spherical metric. We recall that, for arbitrary E ⊂ C, the space C(E,C∞)
of continuous functions f : E → C∞ is endowed with the compact-open topology.
Thus, convergence in C(E,C∞) means uniform convergence with respect to the
spherical metric on all compact subsets of E. For E′ ⊃ E and a family F ⊂
C(E′,C∞) we write ω(F , E) for the sequential closure of F|E in C(E,C∞), that
is, the set of all h ∈ C(E,C∞) which are uniform limit on arbitrary compact sets
in E of some sequence in F . For z ∈ C we write ω(F , z) := ω(F , {z}).

Let now Ω ⊂ C be an open set. We write H(Ω) for the space of holomorphic
functions on Ω and M(Ω) for the space of meromorphic functions on Ω. We allow
meromorphic functions to be locally constant ∞, which makes M(Ω) a closed sub-
space of C(Ω,C∞). Moreover, H∞(Ω) denotes the closure of H(Ω) in M(Ω). Then
f ∈ H∞(Ω) if and only if f is holomorphic or constant ∞ in each component of Ω.
According to the Arzelà-Ascoli theorem, a family F ⊂M(Ω) is normal if and only
if it is (spherically) equicontinuous.

Remark 3.1. Let F ⊂M(Ω) and A ⊂ Ω closed in C.
1. Let N ∈ N. According to the Universality Criterion, F×N |AN is topologically

transitive if and only if ω(F , E) = (C∞)E for generically many (z1, . . . , zN ) ∈ AN
and E := {z1, . . . , zN}. It is easily seen that the following extension holds: If
B ⊂ C∞ is closed then the family F×N |AN is topologically transitive with respect
to BN if and only if ω(F , E) ⊃ BE for generically many (z1, . . . , zN ) ∈ AN and
E := {z1, . . . , zN} (cf. [10, Satz 1.2.2]).

2. If X is a metric space, K(X) shall denote the set of all compact non-empty
subsets of X, and we endow K(X) with the Hausdorff metric. It is known that
K(X) is complete whenever X is complete (see e.g. [8, Section 2.4]). Corollary 1.2
in [3] shows that ω(F ,K) = C(K,C∞) for generically many K ∈ K(A) if F|A is
topologically weak-mixing (note that C(K,C) is dense in C(K,C∞)). In a similar
way, the proofs of Theorem 1.1 and Corollary 1.2 in [3] show that ω(F ,K) ⊃
C(K,B) for generically many K ∈ K(A) if F|A is topologically weak-mixing with
respect to B.

It is easily seen that topologically transitive families of holomorphic functions
can be normal:

Example 3.2. Let Ω ⊂ C be an open set and let F ⊂ H∞(Ω) be the family of
all functions which are locally constant on Ω. Since F is obviously locally normal
at all points, the family is normal on Ω. On the other hand, for each set E ⊂ Ω
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we have ω(F , E) = F|E . In particular, ω(F , z) = C∞ for all z ∈ Ω and thus, by
Remark 3.1.1 (with N = 1), the family F is topologically transitive.

Note that in the preceding example ω(F , E) consists solely of locally constant
functions. More generally, the following extension of Vitali’s theorem holds:

Proposition 3.3. If U ⊂ C is open and F ⊂ M(U) is a normal family, then for
all E ⊂ U the restriction mapping ω(F , U) 3 h 7→ h|E ∈ ω(F , E) is surjective. If
U is a domain and E has an accumulation point in U , then the mapping is also
injective.

Proof. Let g ∈ ω(F , E) and (fn) a sequence in F converging to g in C(E,C∞).
Since a subsequence of (fn) converges locally uniformly on U there exists a function
h ∈ M(U) such that h|E = g. If U is a domain and E has an accumulation point,
the identity theorem shows that the restriction mapping is injective. �

Proposition 3.4. Let Ω ⊂ C be an open set and let B ⊂ C∞ contain at least two
points a, b. If F ⊂ M(Ω) is so that F×2 is topologically transitive with respect to
B2, then F is not normal at any point of Ω.

Proof. Suppose F is normal at some point in a ∈ Ω. Then F is equicontinuous at
a. Let Ak := {z : |z − a| ≤ 1/k}, where k is so large that Ak ⊂ Ω. Since F×2
is topologically transitive with respect to B2, the same holds for F|Ak

. According
to Remark 3.1.1, for each k there is a two-point set Ek = {zk, wk} ⊂ Ak with
ω(F , Ek) ⊃ BEk . Hence, for each k there is some fk ∈ F with

χ(fk(zk), fk(wk)) ≥ χ(b, c)/2.

But this contradicts the equicontinuity of F at a. �

In the converse direction, we now start with non-normal families F ⊂M(Ω). We
say that F is hereditarily non-normal on E ⊂ Ω, if for some infinite subfamily F0

of F each infinite subfamily of F0 is not normal at any point of E. If g# denotes
the spherical derivative of g ∈M(Ω), then, according to Marty’s theorem (see e.g.
[9, p. 318]), F = {fn : n ∈ N} is hereditarily non-normal on E if and only if for
some subsequence (nk) of (n)

(3.1) sup
z∈U

(fnk
)#(z)→∞ (k →∞)

holds for arbitrary open sets U that meet E.
It can be easily shown that non-normality of a family at all points of a set E

does not always imply hereditary non-normality on E:

Example 3.5. The family {(z−a)k : k ∈ N} is not normal at any point of the circle
T + a with centre a. If we define f2k(z) := (z − 2)k and f2k−1(z) := (z + 2)k, then
F = {fn : n ∈ N} is not normal at any point of (T+2)∪(T−2). On the other hand,
let E be any set that intersects both T + 2 and T − 2. If F0 = {fnj

: j ∈ N} is a
subfamiliy of F , then infinitely many of the nj are even or infinitely many are odd.
Thus F0 has an infinite subfamily which is normal at some point in E, and so F is
not hereditarily non-normal on E. In particular, this holds for E = (T+2)∪(T−2).

Proposition 3.6. Let Ω ⊂ C be an open set, F ⊂ M(Ω) and A ⊂ Ω with dense
interior A◦.

(1) If F is not normal at any point of A, then F|A is topologically transitive.
(2) If F is hereditarily non-normal on A, then F|A is topologically weak-mixing.
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Proof. 1. Let U ⊂ A◦ and V ⊂ C∞ be open and non-empty. Since F|U is not
normal, Montel’s theorem (see e.g. [18]) shows that C∞ \

⋃
f∈F f(U) contains at

most two points, so V ∩
⋃
f∈F f(U) is non-empty. In particular, F|A◦ is topologically

transitive. Since A◦ is dense in A, also F|A is topologically transitive.
2. According to the assumption, there exists an infinite subfamily F0 of F such

that each infinite subset of F0 is not normal at any point of A, and so each infinite
subset of F0|A is topologically transitive by part 1. Now, the assertion follows from
Proposition 2.3 which shows that F0|A is topologically weak-mixing. �

Combining the preceding propositions, we obtain the following assertion.

Theorem 3.7. For Ω ⊂ C open and F ⊂M(Ω) the following are equivalent:

(1) F is hereditarily non-normal on Ω.
(2) F is hereditarily transitive.
(3) F is topologically weak-mixing.

Proof. The equivalence of (2) and (3) follows from Proposition 2.3, and that (1)
implies (3) is part of Proposition 3.6. Finally, if (3) holds, then also F×2 is topolo-
gically weak-mixing and thus, according to Proposition 2.3, hereditarily transitive.
Proposition 3.4 now shows that (1) holds. �

The next lemma supplies examples of hereditary non-normality. We write M0

for the set of f ∈M(C) which are either a non-affine entire function or a function
having exactly one pole in C that, in addition, is an omitted value. Without loss
of generality this value can (and will) be chosen to be 0. We write D := D(f) := C
in the first case and D := D(f) := C \ {0} in the second. Then f(D) ⊂ D and thus
f◦n are defined and holomorphic in D. The Julia set J = J(f) is defined as the set
of all z ∈ D(f) such that F := {f◦n : n ∈ N} is not normal at z. It is well-known
that J has either empty interior or equals D. Moreover, J is always a perfect set
(that is, J is non-empty, D-closed and each point is an accumulation point) and in
the case of polynomials J is compact in C. For these and more results we refer to
[5].

Lemma 3.8. For all functions f ∈ M0 the family {f◦n : n ∈ N} is hereditarily
non-normal on J .

Proof. We choose a countable dense subset {wk : k ∈ N} of J . It is known that the
repelling periodic points are dense in J (see e.g. [5, Theorem 4]). Hence, there are
z1 ∈ J and q1 ∈ N with |z1 − w1| < 1 and f◦(jq1)(z1) = z1 for all j. Since

(f◦(jq1))′(z1) = ((f◦q1)′(z1))j =: λj

and
(f◦(jq1))#(z1) = |(f◦(jq1))′(z1)|/(1 + |z1|2) = |λ|j/(1 + |z1|2),

we can choose j1 ∈ N with (f◦(jq1))#(z1) > 1 for all j ≥ j1 because |λ| > 1. Since
J(f◦q1) = J (see [5, Lemma 1]), in a similar way we can find z2 ∈ J , q2 ∈ q1N and
j2 ∈ N with |z2 − w2| < 1/2, j2 ≥ j1 and

(f◦(jq2))#(z2) > 2

for all j ≥ j2. Inductively, we obtain a sequence (zk) in J with |zk − wk| < 1/k,
a sequence (qk)k with qk ∈ qk−1N (we set q0 := 1) and a sequence (jk) in N with
jk ≥ jk−1 such that

(f◦(jqk))#(zk) > k
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for all j ≥ jk. By construction, the zk form a dense set in J . Since J is perfect, for
each open set U that meets J there are infinitely many k with zk ∈ U . Thus, the
construction guarantees that (3.1) is satisfied. �

Remark 3.9. If f is a non-affine entire function, then from the denseness of the
repelling periodic points in J and the fact that J is the boundary of the escaping
set I(f) = {z : f◦n(z) → ∞} (see e.g. [19, Theorem 4.1]) it follows that indeed
each infinite subfamily of {f◦n : n ∈ N} is non-normal on J .

Example 3.10. If f ∈ M0 has the Julia set J = D, then Proposition 3.6 and
Lemma 3.8 imply that {f◦n : n ∈ N} is topologically weak-mixing. According to
Remark 3.1.2, ω(f,K) = C(K,C∞) for generically many K ∈ K(J) (cf. also [4,
Theorem 1] and [3, Theorem 2.1]).

In Section 4, Lemma 3.8 will be applied to an example of transitivity with respect
to a non-necessarily open subset of C.

Remark 3.11. Connections between the Julia set of a complex polynomial and the
chaotical dynamics of a certain associated nonlinear operator on sequence spaces
can be found in [13] and [17].

4. Non-normality on saturated sets

In this section, we consider sequences (fn) of functions meromorphic in an
open set Ω which are non-normal on arbitrary closed subsets of Ω. Even in case of
a strong kind of non-normality of such a family it might be the case that it does not
possess any universality properties at all: For f(z) :=

∑∞
ν=0 aνz

ν a power series
with radius of convergence 1, let Snf denote the n-th partial sum of the series.
Vitali’s Theorem shows that {Snf : n ∈ N} is not normal at any point z ∈ T. If∑∞
ν=0 |aν | < ∞, then the partial sums (Snf) converge uniformly on T to f . This

implies that ω(Snf,E) = {f |E} is a one-point set, for every set E ⊂ T. Thus, we
have no kind of universality behaviour.

In order to state our next result, we recall that a closed set A ⊂ C is called
perfect if A has no isolated points. Perfect sets are locally uncountable, that is,
U ∩ A is uncountable for all open sets U ⊂ C which intersect A. For sets X,Y
and a function f : X → Y , a set A ⊂ X is called f -saturated if A = f−1(f(A)).
It is easily seen that A is f -saturated if and only if f(A ∩ B) = f(A) ∩ f(B) for
all B ⊂ X. If X,Y are topological spaces we say that, for a family F of functions
f : X → Y , the set A is F-saturated at x ∈ X, if a neighbourhood U of x exists
with f(A ∩ U) = f(A) ∩ f(U) for all f ∈ F .

Let Ω ⊂ C be a domain and (fn)n∈N a sequence in M(Ω). We recall that
lim inf fn(A) =

⋃
n∈N

⋂
k≥n fk(A) for A ⊂ Ω.

Theorem 4.1. Let Ω ⊂ C be a domain and F := {fn : n ∈ N} a family in M(Ω).
Suppose that A ⊂ Ω is F-saturated at all points z ∈ A and that lim inf fn(A) is a
locally uncountable set in C∞.

(1) If F is not normal at any point of A then F|A is topologically transitive with
respect to the closure B of lim inf fn(A). If, in addition, for each relatively
open set W ⊂ A the sequence (fn(W )) is eventually increasing then F|A is
topologically mixing with respect to B.

(2) If F is hereditarily non-normal on A, then F|A is topologically weak-mixing
with respect to B.
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Proof. 1. Let W ⊂ A be relatively open and non-empty. Then an open set U ⊂ Ω
exists with U∩A ⊂W and so that f(A)∩f(U) = f(A∩U) for all f ∈ F . Moreover,
let V ⊂ C∞ be open with V ∩ B 6= ∅. Since lim inf fn(A) is locally uncountable,
we obtain that V ∩ lim inf fn(A) is uncountable. By definition of lim inf fn(A),
there exists some m ∈ N such that V ∩

⋂
k≥m fk(A) is uncountable. Hence, as

{fn|U : n ≥ m} is a non-normal family, Montel’s theorem implies that also the set( ⋃
n≥m

fn(U)

)
∩ V ∩

⋂
k≥m

fk(A) =
⋃
n≥m

(
fn(U) ∩ V ∩

⋂
k≥m

fk(A)

)
is uncountable so that there exists some n ≥ m such that

M := fn(U) ∩ V ∩
⋂
k≥m

fk(A)

is uncountable, too. According to

M ⊂ fn(U) ∩ fn(A) ∩ V = fn(U ∩A) ∩ V ⊂ fn(W ) ∩ V,

it follows that fn(W ) ∩ V is uncountable and thus in particular non-empty. This
shows that F|A is topologically transitive with respect to B. If fn(W ) is eventually
increasing, we can choose m above so that, in addition, (fn(W ))n≥m is increasing.
Then F is topologically mixing with respect to B.

2. Part 1 implies that each infinite subset of F0 is topologically transitive with
respect to B. From Proposition 2.3 it follows that the family F0|A is topologically
weak-mixing with respect to B. �

Remark 4.2. Since the lim supBn =
⋂
n∈N

⋃
k≥nBk of a sequence (Bn)n∈N is the

union of the lim inf(Bnk
) over all subsequences (Bnk

)k of (Bn), in part 1 of Theorem
4.1 the set B can be replaced by the closure of lim sup fn(A) if all infinite subsets
of F = {fn : n ∈ N} are not normal at any point of A. Indeed, if an open set V
meets that closure then it meets lim sup fn(A), so V meets lim inf fnk

(A) for some

(nk), and then V meets lim inf fnk
(A). Therefore part 1 can be applied to this set

thanks to our assumption of non-normality.

Examples 4.3.
1. Let (λn) be a sequence of real numbers and let

fn(z) := exp(λnz)

for n ∈ N and z ∈ C. With Ω = C and A = iR we have fn(iR) = T and A is
fn-saturated for all n ∈ N. Since

f#n (z) = 2|λn|/ cosh(λn Re z),

Marty’s theorem implies that for F = {fn : n ∈ N} the following are equivalent:

(1) F is not normal.
(2) F is not normal at any point of iR.
(3) F is hereditarily non-normal on iR.
(4) (λn) is unbounded.

Recall that a compact set E ⊂ iR is said to be a Kronecker set if

ω({exp(n ·) : n ∈ N}, E) = C(E,T).
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Theorem 4.1 and Remark 3.1.2 yield that for all unbounded sequences (λn) gener-
ically many compact subsets E of iR satisfy ω(F , E) = C(E,T) (cf. [14, Section
6.3] or [3, Example 1.3]).

2. As mentioned in the introduction, the iterates f◦n|T of an irrational rotation
f(z) = eiαz form a topologically transitive family with respect to the f◦n-saturated
set T = f◦n(T) which is not topologically weak-mixing with respect to T. Note that
the family {f◦n : n ∈ N} is normal in C.

3. Let f be a function in M0. Due to the fact that the Julia set J is completely
invariant under f , which means here f−1(J) = J , and f(J) ⊂ J ⊂ f(J)∪{a}, where
a is a possible omitted value (only in the case of an entire function), it is seen that
J is f◦n-saturated for all n and that J \ {f◦k(a) : k = 0, . . . , n − 1} ⊂ f◦n(J).
Since J is perfect, the closure of lim inf f◦n(J) equals J∞, the closure of J in C∞.
Lemma 3.8 and Theorem 4.1 show that F|J , F := {f◦n : n ∈ N}, is topologically
weak-mixing with respect to J∞. According to Remark 3.1.2, this implies that
{f◦n|K : n ∈ N} is dense in C(K,J∞) for generically many K ∈ K(J) (cf. also [4,
Theorem 1] and [3, Theorem 2.1]).

In the case of a polynomial f it is known that for all non-empty relatively open
sets W ⊂ J eventually f◦n(W ) = J holds. In particular, f is topologically mixing
with respect to J . Consider f of degree d having a Siegel disk F with fixed point
w0 ∈ F and so that the boundary ∂F ⊂ J of F is a Jordan curve. According to
Carathéodory’s theorem, each inverse Riemann mapping ϕ : D → F with ϕ(0) =
w0 ∈ F induces a homeomorphism (also denoted by ϕ) from T to ∂F . Moreover,
ϕ : T→ ∂F conjugates f |∂F to an irrational rotation (see e.g. [6, Theorem II 6.4] or
[20, pp. 80]). We put A := J \ ∂F . Since f is d-to-one on J we have J = f(A) and
also F|A is topologically mixing with respect to J . While A is not f -saturated, it is
F-saturated at all z ∈ A. Moreover, while F|∂F is hereditarily non-normal on ∂F ,
it is not topologically weak-mixing with respect to ∂F (since f |∂F is conjugate to
an irrational rotation). This shows that some saturation condition as in Theorem
4.1 has to be imposed.

Finally, we are going to consider topological versions of limsup and liminf. For a
sequence (Bn) of closed sets in C∞ we write T lim inf Bn for the topological liminf of
the sequence, i.e. the set of all w ∈ C∞ with the property that each neighbourhood
of w meets Bn for cofinitely many n, and T lim supBn for the topological limsup,
i.e. the set of all w ∈ C∞ with the property that each neighbourhood of w meets
Bn for infinitely many n (see e.g. [15], p. 25). Then T lim inf Bn and T lim supBn
are closed sets in C∞.

Theorem 4.4. Let Ω ⊂ C be a domain and F := {fn : n ∈ N} a family in M(Ω).
Suppose that A ⊂ Ω is compact and such that A is F-saturated at all points z ∈ A.

(1) If for each open set U ⊂ Ω that meets A and each point w ∈ B∗ :=
T lim inf fn(A) there is a neighbourhood V of w such that V ⊂ fn(U) for
infinitely many n, then F|A is topologically transitive with respect to B∗.

(2) If for each open set U ⊂ Ω that meets A and each point w ∈ B∗ :=
T lim sup fn(A) there is a neighbourhood V of w such that V ⊂ fn(U) for
cofinitely many n, then F|A is topologically weak-mixing with respect to B.

Proof. 1. Let W ⊂ A be relatively open and non-empty. Then an open set U ⊂ Ω
exists with U∩A ⊂W and so that f(A)∩f(U) = f(A∩U) for all f ∈ F . Moreover,
let w ∈ B∗ and let V ⊂ C be open with w ∈ V and V ⊂ fn(U) for infinitely many n.
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According to the definition of the topological liminf, there is some m with V ∩fk(A)
non-empty for all k ≥ m. If n ≥ m is so that V ⊂ fn(U) and if wn ∈ V ∩ fn(A),
then also wn ∈ fn(U). We have

wn ∈ fn(U) ∩ fn(A) = fn(U ∩A) ⊂ fn(W ).

This shows that F is topologically transitive with respect to B∗,
2. Let W ⊂ A be relatively open and non-empty, and let U ⊂ Ω with U ∩A ⊂W

and f(A) ∩ f(U) = f(A ∩ U) for all f ∈ F . If w ∈ B∗, an open set V ⊂ C with
w ∈ V and m exist such that V ⊂ fn(U) for all n ≥ m. According to the definition
of the topological limsup, there is some n ≥ m such that V ∩ fn(A) is non-empty.
If wn ∈ V ∩fn(A), then also wn ∈ fn(U). Now, the proof proceeds as in part 1. �

Example 4.5. We consider the family F = {fn : n ∈ N} of polynomials given by
fn(z) := (1− 1/n)zn. Then A := T is fn-saturated for all n and

T lim sup fn(T) = T lim inf fn(T) = T

(while lim inf fn(T) = ∅). Moreover, for each open set U ⊂ C that meets T, there is
a ring domain V = {w : r < |w| < R} with r < 1 < R and such that V ⊂ fn(U) for
all sufficiently large n. According to Theorem 4.4, F|A is topologically weak-mixing
with respect to T. Remark 3.1.2 shows that ω(F ,T) = C(K,T) for generically many
K ∈ K(T).

Acknowledgements. The authors thank Thierry Meyrath for many fruitful dis-
cussions which helped to improve the paper. The first author has been supported by
the Plan Andaluz de Investigación de la Junta de Andalućıa FQM-127 Grant P08-
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