SS 2008

15.04.2008

1. Übung zur Approximationstheorie

Ü1: Es sei $S_n: [-1,1] \to \mathbb{R}$ definiert durch

$$S_n(x) := \cos(n \arccos x) \qquad (x \in [-1, 1]).$$

Zeigen Sie: Für alle $n \in \mathbb{N}$ gilt

(i)
$$S_{n+1}(x) = 2xS_n(x) - S_{n-1}(x)$$
 $(x \in [-1, 1]),$

(ii)
$$S_n \in \mathscr{P}_n$$
 mit $S_n(x) = 2^{n-1}x^n - Q_n(x)$, wobei $Q_n \in \mathscr{P}_{n-1}$.

(iii)
$$S_n(\xi_k) = (-1)^k \text{ für } \xi_k = \cos(k\pi/n), k = 0, \dots, n,$$

(iv)
$$S_n = T_{n,[-1,1]}$$
.

Ü2: Es sei $K \subset \mathbb{C}$ kompakt, $|K| = \infty$. Zeigen Sie:

- a) $T_{n,K} = T_{n,\partial K} \ (n \in \mathbb{N}),$
- b) $T_{n,\overline{\mathbb{D}}} = e_n \ (n \in \mathbb{N})$, wobei $e_n(z) = z^n$.

Hinweis: Satz von Rouché.

Ü3: a) Es sei $(X, \|\cdot\|)$ ein normierter Raum. X heißt strikt konvex, falls für alle $x_1, x_2 \in X$ mit $\|x_1\| = \|x_2\| = r > 0$ und $x_1 \neq x_2$ gilt

$$\|\lambda x_1 + (1 - \lambda)x_2\| < r$$
 $(0 < \lambda < 1).$

Zeigen Sie: Ist X strikt konvex und ist $Y \subset X$ eine konvexe Menge, so existiert zu jedem $x \in X$ höchstens ein bestapproximierendes Element $x^* \in Y$.

b) Ist $(C[0,1], \|\cdot\|_{\infty})$ strikt konvex?