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Abstract

We construct families of universal Taylor series on Ω depending on
a parameter w ∈ G, where Ω and G are planar simply connected do-
mains. The functions to be approximated depend on the parameter w,
w ∈ G. The partial sums implementing the universal approximation are
one variable partial sums with respect to z ∈ Ω for each fixed value of the
parameter w ∈ G. The universal approximation extends to mixed partial
derivatives. This phenomenon is generic in H(Ω×G).
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1 Introduction

The first result concerning the existence of universal Taylor series was estab-
lished before 1914 by Fekete (see [18]). He proved the existence of a real power
series

∑∞
n=1 anx

n, whose partial sums approximate uniformly on [−1, 1] every
continuous function h : [−1, 1] → R with h(0) = 0. In the early 1950s Se-
leznev proved the existence of complex power series

∑∞
n=0 anz

n with radius
of convergence 0, whose partial sums approximate every polynomial uniformly
on each compact set K ⊂ C \ {0} with connected complement ([21]). In the
early 1970s Luh ([9]) and independently Chui and Parnes ([2]) proved the ex-
istence of universal Taylor series with positive radius of convergence defining a
function holomorphic in a simply connected domain Ω ⊂ C and whose partial
sums approximate every polynomial uniformly on each compact set K ⊂ C with
connected complement such that K ∩ Ω = ∅.

In the latter result the universal approximation does not necessarily hold
on the boundary of the domain of definition Ω. In 1996 a stronger result was
obtained, where the universal approximation was valid on the boundary ∂Ω, as
well ([15]). The universal approximation was initially implemented by partial
sums of the Taylor expansion of the universal function with respect to a fixed
center ζ ∈ Ω. However, it was soon realized that the result persists when the
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center in Ω is varied ([16]). After some years ([12], [14]) it was proved that the
class of universal functions remains unchanged, whether the center of expansion
in a simply connected domain Ω is varied or not. Thus, possible definitions of
universal Taylor series are the following ([16], [12]).

Definition 1.1. Let Ω ⊂ C be a domain and f : Ω→ C a holomorphic function.
1. For ζ0 ∈ Ω fixed, the function f belongs to the class U(Ω, ζ0) if the

sequence of the partial sums

SN (f, ζ0)(z) =

N∑
j=0

f (j)(ζ0)

j!
(z − ζ0)j ,

N = 0, 1, 2, . . ., of the Taylor development of f with center ζ0 satisfies the
following: For every compact set K ⊂ C,K∩Ω = ∅ with connected complement
Kc and for every function h : K → C continuous on K and holomorphic in K◦,
there exists a sequence (λn) of positive integers such that

sup
z∈K

∣∣Sλn(f, ζ0)(z)− h(z)
∣∣→ 0, as n→ +∞.

2. The function f belongs to the class U(Ω), if the partial sums

SN (f, ζ)(z) =

N∑
j=0

f (j)(ζ)

j!
(z − ζ)j ,

ζ ∈ Ω, N = 0, 1, 2, . . . satisfy the following condition: For every compact set
K ⊂ C\Ω with connected complement and every function h : K → C continuous
on K and holomorphic in K◦, there exists a sequence (λn) of positive integers
such that for every compact set L ⊂ Ω we have

sup
ζ∈L

sup
z∈K

∣∣Sλn(f, ζ)(z)− h(z)
∣∣→ 0 as n→ +∞.

Obviously U(Ω, ζ0) ⊃ U(Ω). Further, if Ω is simply connected, both classes
U(Ω, ζ0) and U(Ω) are Gδ and dense in H(Ω) endowed with the topology of
uniform convergence on compact subsets of Ω ([16], [12]). Actually, in this case
U(Ω, ζ0) = U(Ω) ([14], see also [12]).

In this paper, we consider a parameter w ∈ G, where G is some simply
connected domain in C, and for every w ∈ G we find functions f(·, w) in U(Ω)
having the property that a function h(·, w) defined on a compact set K ⊂ C
and depending on the parameter w ∈ G can be approximated by the partial
sums of f(·, w) with the same sequence (λn) for all w ∈ G. Furthermore, the
approximation extends to partial derivatives with respect to the parameter w
and to mixed partial derivatives with respect to z and w (cf. [17]). It is possible
to consider one fixed center of expansion b(w) for every w ∈ Ω, which is given
by a holomorphic function b : G → Ω, or one may consider all possible centers
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ζ ∈ Ω. In the latter case, partial derivatives with respect to ζ are also allowed.
In this way, functions f holomorphic in Ω × G can be constructed in such a
way that for, every fixed w ∈ G, the partial sums implementing the universal
approximation are those of the functions of one variable Ω 3 z → f(z, w) ∈ C.

We prove that the corresponding universality phenomenon is generic in the
space H(Ω×G) of holomorphic functions on Ω×G endowed with the topology
of uniform convergence on compacta.

2 Main results

Let (µn) be a strictly increasing sequence of positive integers and (cj) a sequence
of complex numbers. We say that (cj) has Ostrowski-gaps relative to (µn) if a
sequence (qn) exists with 0 < qn → 0 as n→∞ and so that

sup
qnµn≤j≤µn

|cj |1/j → 0 (n→∞)

(see e.g. [13], cf. also [6, p. 311]). Moreover, if (λn) is a sequence of positive
integers with λn = qnµn as above, we say that the sequence (cj) has Ostrowski-
gaps (λn, µn).

The starting point of our considerations is the following observation:

Proposition 2.1. Let Ω ⊂ C be a simply connected domain, f ∈ U(Ω) =
U(Ω, ζ0), K a compact set in C \Ω with connected complement, and h : K → C
a function continuous on K and holomorphic in K◦. Let (λn) be a sequence as
in Definition 1.1. Then for every fixed z ∈ K we have

∂

∂ζ
Sλn(f, ζ)(z)→ 0 =

∂

∂ζ
h(z) as n→ +∞

uniformly on compact subsets of Ω. Furthermore, the sequence (λn) may be
chosen so that in addition for every compact set L ⊂ Ω we have

sup
ζ∈L

sup
z∈K

∣∣∣ ∂
∂ζ

Sλn(f, ζ)(z)
∣∣∣→ 0 as n→ +∞.

Proof. a) For fixed z ∈ K the function Ω 3 ζ → Sλn(f, ζ)(z) ∈ C is holomorphic
in Ω. According to Definition 1.1 this sequence of elements of H(Ω) converges
uniformly on compacta to the (with respect to ζ ∈ Ω) constant function h(z).
Weierstrass’ theorem implies that ∂

∂ζ Sλn(f, ζ)(z) → ∂h
∂ζ (z) = 0 for each ζ ∈ Ω

and even uniformly in each compact subset of Ω. Thus we have

sup
ζ∈L

∣∣∣ ∂
∂ζ

Sλn(f, ζ)(z)
∣∣∣→ 0, as n→ +∞

for every fixed z ∈ K.
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b) By a straightforward computation we find

∂

∂ζ
Sλn(f, ζ)(z) = Sλn(f ′, ζ)(z)− Sλn−1(f ′, ζ)(z)

=
((f ′)(λn)(ζ)

λn!
(z − ζ)λn =: Aλn(ζ, z).

It is known ([14], [12], [3]) that for any f ∈ U(Ω, ζ0) = U(Ω) the sequence
of Taylor coefficients of f ′ with center ζ0 has Ostrowski gaps relative to some
sequence (µn) and that the sequence (λn) may be chosen so that qnµn = λn−1.
Then ∣∣∣ (f ′)(λn)(ζ0)

λn!

∣∣∣1/λn → 0 (n→∞)

and therefore, since λn → +∞, we have supz∈K
∣∣Aλn(ζ0, z)

∣∣→ 0, as n→ +∞.
It follows that

sup
z∈K

∣∣Sλn(f ′, ζ0)(z)− Sλn−1(f ′, ζ0)(z)
∣∣→ 0, as n→ +∞.

Since the sequence of Taylor coefficients of f ′ with center ζ0 has Ostrowski gaps
(λn, µn) and (λn−1, µn), it follows from [12, Lemma 9.2] that for every compact
subset L of Ω we have

sup
ζ∈L

sup
z∈K

∣∣Sλn(f ′, ζ0)(z)− Sλn(f ′, ζ)(z)
∣∣→ 0

and
sup
ζ∈L

sup
z∈K

∣∣Sλn−1(f ′, ζ0)(z)− Sλn−1(f ′, ζ)(z)
∣∣→ 0

as n→ +∞. Putting things together it is easily seen that

sup
ζ∈L

sup
z∈K

∣∣∣ ∂
∂ζ

Sλn(f, ζ)(z)
∣∣∣→ 0, as n→ +∞.

This completes the proof.

Let Ω and G be two simply connected domains in C. For f ∈ H(Ω×G) and
w ∈ G, ζ ∈ Ω and z ∈ C we denote

S̃N (f, w, ζ)(z) =

N∑
j=0

∂jf

∂uj
(u,w)

∣∣∣
u=ζ
· 1

j!
(z − ζ)j

and we consider the following classes of functions.

Definition 2.2. Let b : G→ Ω be a holomorphic function. The class U(Ω, G, b)

contains all functions f ∈ H(Ω×G) such that the sequence S̃N (f, w, ζ) satisfies
the following:
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For every compact set K ⊂ C,K ∩ Ω = ∅, Kc connected, and any holomor-
phic function h in an open neighborhood of K×G (h ∈ H(K×G)), there exists
a sequence (λn) of positive integers such that for every compact set F ⊂ G

sup
w∈F

sup
z∈K

∣∣S̃λn(f, w, b(w)
)
(z)− h(z, w)

∣∣→ 0, as n→ +∞.

Definition 2.3. The class U(Ω, G) contains all functions f ∈ H(Ω × G) such

that the sequence S̃N (f, w, ζ) satisfies the following:
For every compact set K ⊂ C,K ∩ Ω = ∅, Kc connected and any h ∈

H(K × G), there exists a sequence (λn) of positive integers such that for all
compact sets F ⊂ G, L ⊂ Ω

sup
w∈F

sup
ζ∈L

sup
z∈K

∣∣S̃λn(f, w, ζ)(z)− h(z, w)
∣∣→ 0, as n→ +∞.

Theorem 2.4. For all holomorphic functions b : G→ Ω we have

U(Ω, G) = U(Ω, G, b).

We need parameter modifications of several known results. For potential
theoretic notions as for example that of Green’s functions and (non-)thinness,
we refer to [19]. Moreover, let ||f ||M denote the sup-norm of a bounded function
f on M .

Lemma 2.5. Let F ⊂ C compact and let Pn : C × F → C be continuous and
such that Pn(·, w) is a polynomial of degree ≤ µn. If E ⊂ C is closed and
non-thin at ∞ with

lim sup
n→∞

(||Pn(z, ·)||F )1/µn ≤ 1 for all z ∈ E,

then
lim sup
n→∞

(||Pn||M×F )1/µn ≤ 1 for all compact M ⊂ C.

For sake of completeness, we sketch the proof which is based on Bernstein’s
lemma (see e.g. [19, Theorem 5.5.7]) and the following characterization of non-
thinness at ∞ in terms of Green’s functions (see [13, Lemma 1]):

Let E ⊂ C be closed and suppose ER := {w ∈ E : |w| ≤ R} to have positive
capacity for R > 0 sufficiently large. If DR denotes the component of C∞ \ER
containing ∞ then E is non-thin at ∞ if and only if the Green’s functions gDR
for DR satisfy

gDR(z,∞)→ 0 as R→∞.

In a first step, one can reduce the proof to the case of C \E having no bounded
components (cf. [13], proof of Lemma 1). The functions vn : C→ C, defined by

vn(z) := max

(
1

µn
log ||Pn(z, ·)||F , 0

)
for z ∈ C,
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are subharmonic in C ([19, Theorem 2.4.7]) and from Bernstein’s lemma it can
be deduced that

lim sup
n→∞

vn(z) ≤ gDR(z,∞) for z ∈ DR

(cf. [13], proof of Lemma 1). Then, from the above characterization of non-
thinness at ∞, we obtain that vn → 0 in C \ E, as n → ∞. According to the
assumption, this implies vn → 0 in C, where the convergence turns out to be
locally uniformly in C. This is equivalent to the statement of Lemma 2.5.

For F ⊂ G compact and j = 0, 1, . . . we define

aj(F ) :=
1

j!
sup
w∈F

∣∣∣∂jf
∂uj

(u,w)
∣∣
u=b(w)

∣∣∣.
As an application of Cauchy’s estimates we then get (cf. for example the proof
of the Lemma in [3])

Lemma 2.6. Let F ⊂ G be compact. If (µn) is a sequence of integers with

lim sup
n→∞

sup
w∈F

(||S̃µn(f, w, b(w))||M )1/µn ≤ 1

for all compact M ⊂ C, then the sequence (cj) = (aj(F )) has Ostrowski-gaps
relative to (µn).

A more sophisticated application of Cauchy’s estimates in conjunction with
the three circles theorem or the two constants theorem yields

Lemma 2.7. Suppose that (aj(F )) has Ostrowski-gaps (λn, µn). Then

sup
w∈F

sup
ζ∈L
||S̃λn(f, w, ζ)− S̃λn(f, w, b(w))||M → 0 as n→∞,

for all compact L ⊂ Ω and all compact M ⊂ C.

The proof is similar to the proof of Theorem 1 of [10]; see also [12, Lemma
9.2].

Proof of Theorem 2.4. Obviously, we have U(Ω, G) ⊂ U(Ω, G, b). Let f ∈
U(Ω, G, b). We show that f ∈ U(Ω, G). To this aim consider h ∈ H(K × G),
where K is as in Definition 2.2, and F ⊂ G compact. Moreover, suppose (Kn) to
be an increasing sequence of compact sets in Ωc with Kc

n connected, K∩Kn = ∅
and so that E :=

⋃
nKn is closed and non-thin at ∞ (such a sequence exists;

cf. Lemma 1 in [14]). We define gn : K ∪Kn → C by

gn(z.w) :=

{
h(z, w), (z, w) ∈ K ×G
0, (z, w) ∈ Kn ×G

.
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The definition of U(Ω, G, b) implies that a (strictly increasing) sequence (µn)
exists with

sup
w∈F

sup
z∈K∪Kn

|S̃µn
(
f, w, b(w)

)
(z)− gn(z, w)| < 1/n

for all n. Then
Pn(z, w) := S̃µn

(
f, w, b(w)

)
(z)

satisfies the assumptions of Lemma 2.5. Thus, from Lemma 2.5 and Lemma
2.6 we obtain that (aj(F )) has Ostrowski-gaps (λn, µn). From the definition of
Ostrowski-gaps it follows that

sup
w∈F

sup
z∈K

∣∣S̃µn(f, w, b(w))(z)− S̃λn(f, w, b(w))(z)
∣∣→ 0, as n→ +∞.

But then the equiconvergence property of Lemma 2.7 implies that

sup
w∈F

sup
ζ∈L

sup
z∈K

∣∣S̃λn(f, w, ζ)(z)− h(z, w)
∣∣→ 0, as n→ +∞.

This shows that f ∈ U(Ω, G). �

Remark 2.8. We consider the class Ũ(Ω, G). Its definition is the same as the
definition of the class U(Ω, G) but in addition we require the following: For all
compact sets R ⊂ Ω and S ⊂ G we have

sup
z∈R

sup
w∈S

sup
ζ∈R

∣∣S̃λn(f, w, ζ)(z)− f(z, w)
∣∣→ 0 as n→ +∞.

As in [14, Corollary 1] it is seen that from Ostrowski’s classical results on over-
convergence and the above proof of Theorem 2.4 it follows that also

Ũ(Ω, G) = U(Ω, G).

We shall show that the class Ũ(Ω, G) is residual in H(Ω×G). Actually, we
prove this for a subclass of U(Ω, G).

Definition 2.9. Let b : G→ Ω be a holomorphic function. The class U ′(Ω, G, b)

contains all functions f ∈ H(Ω×G) such that the sequence S̃N (f, w, ζ) satisfies
the following: For every compact set K ⊂ C,K ∩Ω = ∅, Kc connected, and any
holomorphic function h in an open neighborhood of K×G (h ∈ H(K×G)), there
exists a sequence (λn) of positive integers such that the following holds: For
every compact set F ⊂ G and every differential operator Dα1,α2

= ∂α1

∂zα1

∂α2

∂wα1
,

α1, α2 ∈ {0, 1, 2, . . .} it holds

sup
w∈F

sup
z∈K

∣∣Dα1,α2
S̃λn

(
f, w, b(w)

)
(z)−Dα1,α2

h(z, w)
∣∣→ 0, as n→ +∞.
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Definition 2.10. The class U ′(Ω, G) contains all functions f ∈ H(Ω×G) such

that the sequence S̃N (f, w, ζ) satisfies the following: For every compact set
K ⊂ C,K∩Ω = ∅, Kc connected and any h ∈ H(K×G), there exists a sequence
(λn) of positive integers such that the following holds: For all compact sets
F ⊂ G, L ⊂ Ω and for every differential operator Dα1,α2,α3

= ∂α1

∂zα1

∂α2

∂wα2

∂α3

∂ζα2
,

α1, α2, α3 ∈ {0, 1, 2, . . .}, it holds

sup
w∈F

sup
ζ∈L

sup
z∈K

∣∣Dα1,α2,α3
S̃λn(f, w, ζ)(z)−Dα1,α2,α3

h(z, w)
∣∣→ 0, as n→ +∞.

Proposition 2.11. For all holomorphic functions b : G→ Ω we have

U ′(Ω, G) ⊂ U ′(Ω, G, b).

Proof. Let f ∈ U ′(Ω, G). Then, according to the Proposition 2.1 we have

sup
w∈F

sup
ζ∈L

sup
z∈K

∣∣Dα1,α2,α3 S̃λn(f, w, ζ)(z)
∣∣→ 0, as n→ +∞,

provided that α3 6= 0.
We choose L compact such that b(F ) ⊂ L ⊂ Ω. Then,

Dα1,1S̃λn
(
f, w, b(w)

)
(z)

= Dα1,1,0S̃λn(f, w, b(w))(z) +Dα1,0,1S̃λn(f, w, b(w))(z) · b′(w)

→ Dα1,1,0h(z, w) + 0 ≡ Dα1,1h(z, w),

as n→ +∞, uniformly on F ×K, because b′ is bounded on the compact set L
containing b(F ).

For general α2 the proof follows by induction.

Theorem 2.12. The class U ′(Ω, G) is a residual subset of H(Ω×G) endowed
with the topology of uniform convergence on compacta.

Proof. It is known (see e.g. [5]) that polynomials in two variables are dense
in the space of holomorphic functions defined on the product of two simply
connected planar open sets endowed with the topology of uniform convergence
on compacta. Thus, the function h can be taken to be a polynomial of two
variables.
For compact sets K ⊂ C, F ⊂ G,L ⊂ Ω, a polynomial h, I a finite sub-
set of {0, 1, 2, . . .}3, s ∈ {1, 2, . . .} and n ∈ {0, 1, 2, . . .} we consider the set
E(K,F,L, h, I, s, n) of all g ∈ H(Ω×G) such that

sup
w∈F

sup
ζ∈L

sup
z∈K

∣∣Dα1,α2,α3
S̃n(g, w, ζ)(z)−Dα1,α2,α3

h(z, w)
∣∣ < 1

s

for all (α1, α2, α3) ∈ I.
It is known ([12]) that there exists a sequence Km,m = 1, 2, . . ., of compact

subsets of C\Ω with Kc
m connected, such that for every compact set K ⊂ C\Ω

with Kc connected there exists m ∈ {1, 2, . . .} so that K ⊂ Km.
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We also consider Fτ , τ = 1, 2, . . . and Lρ, ρ = 1, 2, . . ., two exhausting
families of compact sets in G and Ω, respectively. Since G and Ω are simply
connected we may assume that Fτ and Lρ have connected complements ([20]).
Finally, let hj , j = 1, 2, . . ., be an enumeration of the polynomials in two vari-
ables with coefficients in Q + iQ.

One can easily see that

U ′(Ω, G) =
⋂

I,m,τ,ρ,j,s

⋃
n

E(Km, Fτ , Lρ, hj , I, s, n)

where I varies in the set of finite subsets of {0, 1, 2, . . .}3, which is a denumerable
set.

If we show that each E(K,F,L, h, I, s, n) is open in H(Ω × G), then it
will follow that U(Ω, G) is a Gδ set. Further, if we show in addition that⋃
nE(Km, Fτ , Lρ, hj , I, s, n) is dense in H(Ω × G) for every fixed m, τ, ρ, j, I

and s then Baire’s Category Theorem would imply that U(Ω, G) is a dense Gδ
subset of the Fréchet space H(Ω×G).

We consider compact sets M,M1, T and T1, such that L ⊂ M◦ ⊂ M ⊂
M◦1 ⊂ M1 ⊂ Ω and F ⊂ T ◦ ⊂ T ⊂ T ◦1 ⊂ T1 ⊂ G. Let also V be an open set
in C containing K. We consider another two compact sets S and S1 such that
K ⊂ S◦ ⊂ S ⊂ S◦1 ⊂ S1 ⊂ V . Then dist(M × T × S, (M◦1 × T ◦1 × S◦1 )c) > r for
some r > 0. Suppose g ∈ E(K,F,L, h, I, s, n). We show that each ϕ ∈ H(Ω×G)
which is sufficiently (uniformly) close to g on the compact set M1×T1 ⊂ Ω×G
belongs to E(K,F,L, h, I, s, n).

By Cauchy estimates on discs with radius r centered on points of M × T ⊃
M◦ × T ◦ we conclude that S̃n(ϕ,w, ζ)(z) and S̃n(g, w, ζ)(z) are close on the
open set M◦×T ◦×S◦ if ϕ is uniformly close to g on the compact set M1×T1.
Since Dα1,α2,α3 is a continuous operator on H(M◦ × T ◦ × S◦) it follows that

Dα1,α2,α3
S̃n(ϕ,w, ζ)(z) and Dα1,α2,α3

S̃n(g, w, ζ)(z) are uniformly close on the
compact set L × F ×K ⊂ M◦ × T ◦ × S◦. Therefore, ϕ ∈ E(K,F,L, h, I, s, n)
and this set is open.

Next we will show that the sets
⋃
nE(Km, Fτ , Lρ, hj , I, s, n) are dense in

H(Ω×G).

Let f ∈ H(Ω × G), let L̃ ⊂ Ω a compact set, F̃ ⊂ G another compact

set and ε > 0. Without loss of generality we may assume that Lρ ⊂ L̃ and

that L̃c is connected and Fτ ⊂ F̃ . We have to find n ∈ {0, 1, 2, . . .} and g ∈
E(Km, Fτ , Lρ, hj , I, s, n) such that

sup
z∈L̃

sup
w∈F̃

∣∣g(z, w)− f(z, w)
∣∣ < ε.

We consider the sets L̃× F̃ and Km×Fτ . Since L̃ and Km are disjoint compact
sets in C with connected complements we can find two disjoint simply connected
open sets Ω1 and Ω2 such that L̃ ⊂ Ω1 ⊂ Ω and Km ⊂ Ω2 ⊂ C. We also recall
that the open set G contains F̃ and G is simply connected. The open sets Ω1×G
and Ω2 × G in C2 are disjoint and (Ω1 × G) ∪ (Ω2 × G) = (Ω1 ∪ Ω2) × G is a
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product of two simply connected planar open sets. Therefore, Runge’s theorem
(see e.g. [5]) can be applied to this set.

We consider the holomorphic function ϕ : (Ω1 ∪ Ω2) × G → C defined by
ϕ(z, w) = f(z, w) on Ω1×G and ϕ(z, w) = hj(z, w) on Ω2×G. Runge’s theorem
yields a sequence of polynomials gλ(z, w), λ = 1, 2, . . . converging to ϕ(z, w)
uniformly on each compact set of the open set (Ω1 ∪ Ω2) × G. Weierstrass’
theorem implies that Dα1,α2

gλ(z, w) −→
λ→∞

Dα1,α2
ϕ(z, w) uniformly on compacta

of (Ω1 ∪ Ω2)×G. Thus, we can find λ so that, if we set g = gλ, we have

sup
z∈L̃

sup
w∈F̃

∣∣g(z, w)− f(z, w)
∣∣ < ε

and
sup
w∈Fτ

sup
z∈Km

∣∣Dα1,α2g(z, w)−Dα1,α2h(z, w)
∣∣ < 1/s

for all α1, α2 with (α1, α2, 0) ∈ I. Now, since g is a polynomial

S̃n(g, w, ζ)(z) = g(w, z) for all ζ,

provided n is bigger than the degree of g. Thus

Dα1,α2,0S̃n(g, w, ζ)(z) = Dα1,α2g(z, w)

and therefore, since Dα1,α2,0h(z, w) = Da1,a2h(z, w),

sup
w∈Fτ

sup
z∈Km

sup
ζ∈Lρ

∣∣∣Dα1,α2,0S̃n(g, w, ζ)(z)−Dα1,α2,0h(z, w)
∣∣∣ < 1

s
.

If α3 6= 0 then Dα1,α2,α3
S̃n(g, w, ζ)(z) = Dα1,α2,α3

g(z, w) = 0 as well as
Dα1,α2,α3

h(z, w) = 0. It follows that

sup
w∈Fτ

sup
z∈Km

sup
ζ∈Lρ

∣∣∣Dα1,α2,α3
S̃n(g, w, ζ)(z)−Dα1,α2,α3

h(z, w)
∣∣∣ = 0 <

1

s
.

Therefore
⋃
nE(Km, Fτ , Lρ, hj , I, s, n) is open and dense in the complete metriz-

able space H(Ω×G). Baire’s theorem yields that their denumerable intersection
is also Gδ and dense. This proves that U ′(Ω, G) is Gδ and dense.

Remark 2.13.

• The classes U ′(Ω, G, b) and U ′(Ω, G) are subsets of H(Ω × G). We can
consider analogous classes in A∞(Ω × G) (see also [11], [8]). We re-
mind that a holomorphic function f ∈ H(Ω, G) belongs to A∞(Ω × G),
iff Dα1,α2

f extends continuously to Ω×G for all differential operators
Dα1,α2

= ∂α1

∂zα1

∂α2

∂wα2
, α1, α2 ∈ {0, 1, 2, . . . , }. The topology of A∞(Ω×G)

is defined by the seminorms

sup
(z,w)∈Ω×G,‖(z,w)‖≤n

∣∣Dα1,α2
f(z, w)

∣∣, n, α1, α2 ∈ {0, 1, 2, . . .}.
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In the new definitions the supremuma with respect to z, w, ζ will be cal-
culated on compact subsets of Ω, G and Ω respectively, but the universal
approximation will be required on compact subsets K×G, K ∩Ω 6= ∅, Kc

connected only. These new classes will be residual in A∞(Ω × G). The
proof is similar to the proof of Theorem 2.12 mainly because the function
g, which is a polynomial, obviously belongs to A∞(Ω×G).

• In all the above results the set Ω×G can be replaced by Ω×G1×· · ·×Gd,
where Ω, G1, . . . , Gd are planar simply connected domains. The proofs are
largely the same, because every function f ∈ H(Ω × G1,× . . . × Gd) can
be approximated uniformly on compacta by polynomials ([5]).

• Consider µ any infinite subset of the set of natural numbers. Then in the
definition of the class U(Ω, G) if we require that λj ∈ µ for all j = 1, 2, . . .,
then we find another class Uµ(Ω, G). This class is also residual. The proof
is similar to the proof of the main result of Theorem 2.12. It suffices to
mention two points. First, in the description of the class as intersection
of a union, the union this time will be taken only for n ∈ µ. Second, at
the density argument we find a polynomial g(·, ·) and then we choose a
natural number n greater than the degree of g. Certainly we can choose
n ∈ µ, because µ is an infinite subset of the set of natural numbers. Thus
Uµ(Ω, G) is also residual and hence dense. This implies in a standard
way ([1]) algebraic genericity. That is, U(Ω, G) ∪ {0} contains a vector
subspace dense in H(Ω×G).
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