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Abstract

Let P be a convex and dominated statistical model on the measurable space
(X ,A), with A minimal sufficient, and let n ∈ N. Then A⊗n

sym, the σ-algebra of all
permutation invariant sets belonging to the n-fold product σ-algebra A⊗n, is shown
to be minimal sufficient for the corresponding model for n independent observations,
Pn = {P⊗n : P ∈ P}.

The main technical tool provided and used is a functional analogue of a theorem
of Grzegorek (1982) concerning generators of A⊗n

sym.

1 Introduction and main results

1.1 Aim. Perhaps the most natural first step in the analysis of a statistical model
consists in determining a minimal sufficient σ-algebra. Since this is not always easy, it
appears to be worthwhile to supply theorems yielding minimal sufficient σ-algebras for
statistically interesting classes of models. Restricting attention to models for independent
and identically distributed observations, we note that the case of exponential families is
well understood (see, for example, Theorem 1.6.9 in Pfanzagl (1994) and, concerning a
possible misinterpretation, Theorem 2.3 of Mattner (1999a)) and that the case of location-
scale parameter models on the real line has been treated in Mattner (1999b).

The aim of the present paper is to prove, roughly speaking, that the order statistic
is always minimal sufficient in the case of independent and identically distributed obser-
vations from convex models (Theorem 1.5). Previously, this was known for boundedly
complete convex models only (see Remarks 1.7 b) and c)).
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1.2 Guide. The main result of the present paper is the “if” statement in Theorem
1.5. The corresponding “only if” statement does not depend on convexity and is hence
stated separately as Theorem 1.4. The latter Theorem seems intuitively obvious but is
apparently nontrivial to prove. Theorem 1.5 is illustrated by proving Theorem 1.6. Some
remarks and references to the literature are collected in 1.7.

Proofs of Theorems 1.4, 1.5 and 1.6 are supplied in Section 3. The necessary auxiliary
facts are presented in Section 2. Of these, the result of 2.5 a), on the generation of the
σ-algebra of all permutation invariant sets, is of central importance for the present paper
and appears to be of independent interest.

1.3 Notation. In this paper, a statistical model (or experiment) P on a measurable
space (X ,A) is a subset of Prob(X ,A), the set of all probability measures on (X ,A).
(This deviation from the more usual convention, of requiring P to be an indexed family
of probability measures, ensures that the phrase “P convex” makes sense.) We assume as
known, for example from Chapter 1 of Torgersen (1991), the usual definitions and basic
facts concerning dominatedness of P , and concerning sufficiency, minimal sufficiency, and
bounded completeness of sub-σ-algebras of A. For sets C, D ∈ A, we write C = D [P ]
or C =P D if the symmetric difference C M D has P -measure zero for every P ∈ P .
Similarly, for sub-σ-algebras C,D of A, we write C ⊂ D [P ] or C ⊂P D if for every C ∈ C
there is a D ∈ D with C = D [P ]. We write P � µ if P is dominated by µ, which means
that µ is a σ-finite measure on (X ,A) and that every P ∈ P has a density with respect
to µ.

Given the model P on (X ,A) (corresponding to sample size 1), we write Pn for the
model {P⊗n : P ∈ P} of n-fold product measures on the n-fold product measurable space
(X n,A⊗n) (corresponding to arbitrary sample size n ∈ N). If now C is a sub-σ-algebra
of A, then C⊗n

sym denotes the σ-algebra of all permutation invariant sets belonging to the
n-fold product (or power) σ-algebra C⊗n. More explicitly, let Sn denote the group of all
permutations of the set {1, . . . , n}, and let us put xπ := (xπ(1), . . . , xπ(n)) for x ∈ X n and
π ∈ Sn. Then

C⊗n
sym :=

{
C ∈ C⊗n : x ∈ C, π ∈ Sn ⇒ xπ ∈ C

}
.

In Sections 2 and 3 below we also use the notation (
⊗n

i=1 fi)(x) :=
∏n

i=1 fi(xi) for

x ∈×n

i=1Xi and functions fi : Xi → R, and accordingly f⊗n :=
⊗n

i=1 f .

1.4 Theorem (P arbitrary). Let P be a dominated model on the measurable
space (X ,A), let C ⊂ A be a σ-algebra, and let n ∈ N. If C⊗n

sym is minimal sufficient for
Pn, then C is minimal sufficient for P .

1.5 Theorem (P convex). Let P be a convex and dominated model on the mea-
surable space (X ,A), let C ⊂ A be a σ-algebra, and let n ∈ N. Then C⊗n

sym is minimal
sufficient for Pn iff C is minimal sufficient for P .

1.6 Theorem (P defined by moment conditions). Let µ be an atomless and
σ-finite measure on the measurable space (X ,A), let U be a finite set of A-measurable
R-valued functions on X , let (cu : u ∈ U) be a family of real numbers, and assume that

P :=

{
P ∈ Prob(X ,A) : P � µ,

∫
|u| dP < ∞,

∫
u dP = cu (u ∈ U)

}
(1)
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is nonempty. Then, for every n ∈ N, A⊗n
sym is minimal sufficient for Pn.

1.7 Remarks. a) Do Theorems 1.4 and 1.5 remain true if the assumption of dom-
inatedness is omitted? The following result of Landers (1972), although inconclusive in
this respect, suggests that the answer could be in the negative: For a nondominated
model P , the existence of a minimal sufficient σ-algebra neither implies nor is implied by
the existence of a minimal sufficient σ-algebra for P2. See Examples 2 and 4 of Landers
(1972).

b) Theorem 1.5 is analogous to the known theorem which results if “minimal sufficient”
is replaced by the stronger “boundedly complete and sufficient” in both cases, and if the
condition of dominatedness is omitted. See Pfanzagl (1994), pages 19-21, and, for exten-
sions and further references, Mandelbaum & Rüschendorf (1987) and Mattner (1996). It
is somewhat surprising, in view of the literature just indicated, that the question leading
to Theorem 1.5 has apparently not been treated before.

c) A very simple example to which Theorem 1.5 applies, via its corollary Theorem
1.6, while the theorem mentioned in b) does not, is given by P := set of all probability
measures on R with Lebesgue-density and with median zero: Here 1.6 immediately yields
minimal sufficiency of the order statistic (which is not boundedly complete), for every
sample size n ∈ N.

d) Some scholars seem to be inclined to think that, under suitable “regularity condi-
tions” on P , the two properties

A⊗n
sym is not minimal sufficient for Pn (n ≥ n0(P)),(2)

P is an exponential family(3)

should be equivalent, and that hence a result like the “if” statement in Theorem 1.5 could
perhaps be proved easily, subject to the “regularity conditions”, by proving nonexponen-
tiality of P . Indeed, for many familiar examples of models P , either both or neither of
(2) and (3) hold. Nevertheless the two properties are known to be independent:

To prove (2) 6⇒ (3), we may use the following beautiful example, indicated on page 18
of Torgersen (1965) and explained in more detail in paragraphs 1.12 b) and c) of Mattner
(1999b): Let f be a probability density with respect to Lebesgue measure λλλ on R, such
that f = f1f2 with f1 a normal density and f2 periodic, and let P be the corresponding
location parameter model, P = {f(· − ϑ)λλλ : ϑ ∈ R}. Then, for every n ≥ 2, the order
statistic is not minimal sufficient for Pn but, except for very special and explicitly known
f2, the model P is not an exponential family.

To prove (3) 6⇒ (2), the most elementary example is the family of Bernoulli distri-
butions P = {Bp = (1− p)δ0 + pδ1 : p ∈ ]0, 1[}, with X = {0, 1} and A = power set of
X . This P is an exponential family but, for example by convexity of P and by applying
Theorem 1.5, has A⊗n

sym minimal sufficient for every n ∈ N.
A more sophisticated example is supplied by Theorem 2.3 of Mattner (1999a). It

shows that the implication (3) ⇒ (2) can fail to hold even for a smooth one-parameter
model on R with continuous Lebesgue densities.

e) It is perhaps appropriate to recall the standard practical interpretation of minimal
sufficiency of the order statistic for a model Pn: If one uses observations x1, . . . , xn ∈
X modelled by Pn only to perform a statistical procedure (such as an estimator, or a
confidence interval, or a test) from which the observations can not be recovered up to
their order (and this is the case for many standard statistical procedures), then one loses
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information contained in the observations. For example, just a knowledge of some good
estimator of one quantity of interest together with the estimators value attained at the
observations may be useless for computing the value of any good estimator of another
quantity of interest.

2 Auxiliary facts

2.1 A functional Sierpiński lemma with possibly unbounded functions in
the generator. Let X be a set and let F and G be sets of R-valued functions on X .
Assume that F ⊂ G, F is stable under multiplication, G is a vector space with 1 ∈ G, and
G is closed with respect to pointwise sequential convergence. Then every F -measurable
R-valued function belongs to G.

Remark. This must be well known, but I am not aware of any reference.

Sketch of proof. One may proceed in 6 steps: 1. One may assume that F is count-
able, F = {fk : k ∈ N}. (Compare Halmos (1950), page 24, Theorem D.) 2. For every
polynomial function p : Rn → R, we have p(f1, . . . , fn) ∈ G. 3. For every continuous
function F : Rn → R, we have F (f1, . . . , fn) ∈ G. 4. For every continuous function
F : RN → R, we have F (fk : k ∈ N) ∈ G. 5. For every measurable function F : RN → R,
we have F (fk : k ∈ N) ∈ G. (By Doob (1994), page 59, Theorem.) 6. By the measur-
able factorization theorem (Dudley (1989), Theorem 4.2.8), every F -measurable function
belongs to G.

2.2 Generation of symmetric σ-algebras. Let X be a set, let F be a set of
R-valued functions on X , and let A := σ(F) be the σ-algebra generated by F . Let
further Γ be a finite group of A-measurable transformations operating on X , and put
AΓ := {A ∈ A : A = γA (γ ∈ Γ)}. If F is stable under multiplication, then

AΓ = σ(

{∑
γ∈Γ

f ◦ γ : f ∈ F

}
).(4)

Remark. This would be wrong if the assumption “F stable under multiplication”
were omitted, as is obvious from the example X = R, F = {the identiy}, Γ = the
reflection group.

Proof. Let us denote the right hand side of (4) by B. Clearly, B ⊂ AΓ, so it remains
to be shown that AΓ ⊂ B. Let us put

G :=

{
g ∈ RX :

∑
γ∈Γ

g ◦ γ B-measurable

}
.

Then X , F and G fulfill the assumptions of 2.1. Hence every A-measurable R-valued
function belongs to G. Let now g be an AΓ-measurable R-valued function. Then g is
A-measurable and Γ-invariant. Hence g ∈ G and thus g =

∑
γ∈Γ g ◦ γ is B-measurable.

2.3 Generation of product σ-algebras. Let n ∈ N and let, for each i ∈ {1, . . . , n},
(Xi,Ai) be a measurable space and Fi be a set of R-valued functions with Ai = σ(Fi)
and with 1 ∈ Fi. Then ⊗n

i=1Ai = σ(⊗n
i=1fi : fi ∈ Fi for i = 1, . . . , n).

Proof. One easily shows that the right hand side contains every set of the form
X1 × . . .×Xi−1 × Ai ×Xi+1 × . . .×Xn with Ai ∈ Ai.
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2.4 The “first main theorem” on symmetric polynomials in vector vari-
ables. Let K be a field of characteristic zero, let m,n ∈ N, and let p ∈ K[yi,j : 1 ≤ i ≤
m, 1 ≤ j ≤ n] be a polynomial. Then p has the invariance property

p(yi,π(j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n) = p(yi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n) (π ∈ Sn)(5)

iff p can be written as a polynomial in the polynomials

ϕν,α1,...,αν
(yi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n) =

∑
β1,...,βν∈{1,...,n}
pairwise different

ν∏
l=1

yαl,βl

with ν ∈ {1, . . . , n} and α1, . . . αν ∈ {1, . . . ,m}.
Remark. To avoid repetitions, one could impose the condition α1 ≤ . . . ≤ αν .

Proof. This is stated and proved on pages 37-39 of Weyl (1946).

2.5 Generation of the σ-algebra of all permutation invariant sets in a
power σ-algebra. Let n ∈ N, let (X ,A) be a measurable space, and let F be a set of
R-valued functions on X with A = σ(F) and 1 ∈ F .

a) Then

A⊗n
sym = σ(X n 3 x 7→

∑
π∈Sn

(
n⊗

i=1

fi

)
(xπ) : f1, . . . , fn ∈ F).(6)

b) If F is convex, then

A⊗n
sym = σ(f⊗n : f ∈ F).(7)

Remark. The result (6) of part a) is analogous to Theorem 1 of Grzegorek (1982),
which states that

A⊗n
sym = σ(

{ ⋃
π∈Sn

n

×
i=1

Aπi
: A1, . . . , An ∈ A

}
).(8)

It seems that neither of (6) and (8) is easily deducible from the other. In this paper, (6)
is used twice, once in the proof of 2.5 b), which is the main ingredient in the proof 3.2 of
Theorem 1.5, and once in the proof of 2.7. In the latter case, but apparently not in the
former, we could have used Grzegorek’s theorem instead.

Proof. a) Let us put m1 := n. We first apply 2.2, with the present (X n,A⊗n) in
place of (X ,A), and with Γ := Sn, operating on X n via (π, x) 7→ xπ. The role of the
generator of A⊗n is played by{

m2∏
i2=1

m1⊗
i1=1

fi1,i2 : m2 ∈ N, fi1,i2 ∈ F

}
,

which is trivially stable under multiplication and indeed generates A⊗n by 2.3. Thus 2.2
yields

A⊗n
sym = σ(X n 3 x 7→

∑
π∈Sn

m2∏
i2=1

(
m1⊗

i1=1

fi1,i2

)
(xπ) : fi1,i2 ∈ F).(9)
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Let us fix m2 ∈ N and put

M := {1, . . . ,m1} × {1, . . . ,m2}, N := {1, . . . , n}.

Let us further fix fi1,i2 ∈ F for (i1, i2) ∈ M . Then

∑
π∈Sn

m2∏
i2=1

(
m1⊗

i1=1

fi1,i2

)
(xπ) = p(fi1,i2(xj) : (i1, i2) ∈ M, j ∈ N)(10)

where p is a polynomial in m1m2n variables, namely

p(yi1,i2,j) =
∑

π∈Sn

∏
(i1,i2)∈M

yi1,i2,π(i1),

which satisfies (5) for m := m1m2, except for the irrelevant difference that the indexing
i ∈ {1, . . . ,m} in 2.4 is here replaced by (i1, i2) ∈ M . Thus an application of 2.4 shows
that the left hand side of (10) can be written as a polynomial in the functions

∑
β1,...,βν∈{1,...,n}
pairwise different

ν∏
l=1

fα1,l,α2,l
(xβl

) (ν ∈ N, (α1,l, α2,l) ∈ M).(11)

Since 1 ∈ F , the sum in (11) can be written as

1

(n− ν)!

∑
π∈Sn

n∏
i=1

fi(xπi
)

with f1 := fα1,1,α2,1 , . . . , fν := fα1,ν ,α2,ν and fν+1 := . . . := fn := 1 all belonging to F .
Hence the left hand side of (10) can be written as a polynomial function of functions
occurring in the generator of the right hand side of (6). It follows that the left hand side
of (10) is measurable with respect to the right hand side of (6). In view of (9), this proves
(6).

b) Let E denote the right hand side of (7). Clearly, A⊗n
sym ⊃ E . To prove the converse

inclusion, let f1, . . . , fn ∈ F . Then, for every λ = (λ1, . . . , λn) ∈ [0,∞[n with
∑

λj =
1, the function (

∑n
j=1 λjfj)

⊗n is E-measurable. The latter clearly remains true if the
condition

∑
λj = 1 is omitted. Expanding in powers of λ, that is

(
n∑

j=1

λjfj)
⊗n(x) =

∑
α∈{0,...,n}n

α1+...+αn=n

λα ·
∑

π∈Sn

f1(xπ1) · . . . · f1(xπα1
) · . . . · fn(xπn−αn+1) · . . . · fn(xπn),

and differencing once with respect to each λi and then setting λ = (0. . . . , 0) yields the
E-measurability of the coefficient of λ1 · . . . · λn in (

∑n
j=1 λjfj)

⊗n. This coefficient is

the function X n 3 x 7→
∑

π∈Sn

(
n⊗

i=1

fi

)
(xπ). Using (6) from part a), we conclude that

A⊗n
sym ⊂ E .
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2.6 Comparison of σ-algebras modulo dominated families of measures via
comparison modulo pairs. Let P be a dominated model on (X ,A), and let C,D ⊂ A
be σ–algebras. Then C ⊂ D [P ] iff, for every choice of P, Q ∈ P , we have C ⊂ D [{P, Q}].

Remark. This follows from the proof of Proposition 1 in Le Bihan, Littaye–Petit &
Petit (1970). The validity of that proof is not affected by the counterexamples of Luschgy
(1978) and Siebert (1979) to the Théorème in Le Bihan, Littaye–Petit & Petit (1970).
For the convenience of the reader, we nevertheless provide a shorter and more elementary
version of the cited proof.

Proof. The “only if” part is trivial. So let us assume that C ⊂ D [Q] for every Q ⊂ P
with cardinality |Q| ≤ 2. By dominatedness, there exists a countable set P0 ⊂ P having
the same nullsets as P . So we have to show that

C ⊂ D [P0].(12)

Let C ∈ C. For every Q ⊂ P0 with |Q| ≤ 2, we may choose a set DQ ∈ D with
C = DQ [Q], and we may put

DP :=
⋂
{DQ : Q ⊂ P0, |Q| ≤ 2, P ∈ Q} (P ∈ P0),

D :=
⋃

P∈P0

DP .

(Caution: DP and D{P} are defined entirely differently.) Then D ∈ D. For every P ∈ P0,
we have C =P DP ⊂ D. Hence C ⊂ D [P0]. For every {P0, P} ⊂ P0, we have DP ⊂
D{P0,P} =P0

C, and thus D ⊂ C [P0]. Hence also D ⊂ C [P0]. Thus (12) is proved.

2.7 Comparison of power σ-algebras versus comparison of their symmetriza-
tions. Let P be a dominated model on the measurable space (X ,A), let C,D ⊂ A be
σ–algebras , and let n ∈ N. Then C⊗n

sym ⊂ D⊗n
sym [Pn] iff C ⊂ D [P ].

Remark. I do not know whether the assumption of dominatedness, used below in the
proof of the “only if” part, may be omitted without substitute.

Proof. “if”: An application (6) from 2.5 a), with F = {1C : C ∈ C}, yields

C⊗n
sym = σ(X n 3 x 7→

∑
π∈Sn

(
n⊗

i=1

1Ci

)
(xπ) : C1, . . . , Cn ∈ C)

and a similar representation of Dn
sym. Since, as is well known, inclusion modulo nullsets

of σ-algebras follows from inclusion modulo nullset of any generating set of functions, the
assumption C ⊂ D [P ] easily yields C⊗n

sym ⊂ D⊗n
sym [Pn].

“only if”: By dominatedness and by 2.6, we may assume that P = {P1, P2}. Let C0 ∈
C. We have to construct a D0 ∈ D with C0 = D0 [P ]. Put C := ×d

i=1C0. By assumption,
there is a D ∈ Dn with D = C [Pn]. For y ∈ ×n

i=2X , let Dy := {x ∈ X : (x, y) ∈ D}.
If P ∈ P is fixed, then, by Fubini, for P n−1–almost every y ∈ Cn−1

0

(13) C0 = Dy [P ].

This would easily imply the claim if P were dominated by one of its elements. The general
case seems to necessitate a more complicated argument, such as the following.
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Put µ := P1 + P2 and choose C–measurable densities gi and D–measurable densities
hi such that, for i = 1 and 2,

(14) Pi|C = gi · µ|C, Pi|D = hi · µ|D.

There is no loss in generality in assuming that one of the following three inclusions holds:

C0 ⊂ {g1 = 0, g2 = 0},(15)

C0 ⊂ {g1 > 0, g2 > 0},(16)

C0 ⊂ {g1 > 0, g2 = 0}.(17)

(Otherwise cut C0 down to each of the above three sets and to a fourth set similar to the
third, construct sets D0 separately in each case, and join.)

Also, we may assume that µ(C0) > 0, since otherwise we may take D0 = ∅.
In case of (15), (14) shows that P1(C0) = P2(C0) = 0, a case just excluded.
Now assume (16) and µ(C0) > 0. Then the statement involving (13) yields a y ∈ X n−1

such that, simultaneously, C0 = Dy [P1] and C0 = Dy [P2], so that we may take D0 = Dy.
Finally assume (17) and µ(C0) > 0. Now the statement involving (13) only yields a

y1 ∈ X n−1 such that C0 = Dy1 [P1]. We put

D0 := Dy1 ∩ {h2 = 0}.

Then

(18) C0 ∩ {h2 = 0} = D0 [P1]

and, in view of P2(C0) =
∫

C0
g2 dµ = 0 =

∫
D0

h2 dµ = P2(D0),

(19) C0 = D0 [P2].

By P2(C0) = 0 and by the choice of D, we have P n
2 (D) = 0, hence

µn(D ∩ {h2 > 0}n) = 0.

This implies

P n
1 (C ∩ {h2 > 0}n) = 0,

so that

(20) C0 ∩ {h2 > 0} = ∅ [P1].

Taken together, (18), (20) and (19) yield C0 = D0 [P ].

2.8 Moment conditions, products, and measurability. Let (X ,A) be a mea-
surable space. Below, L∞(X ,A) denotes the set of all R-valued and bounded measurable
functions on X . If µ is a measure on (X ,A), then L1(X ,A, µ) denotes the set of all
R-valued and µ-integrable functions on X .

Lemma. Let µ be an atomless measure on the measurable space (X ,A), let n ∈ N,
let u1, . . . , un ∈ L1(X ,A, µ), and let

F :=

{
f ∈ L∞(X ,A) :

∫
fui dµ = 0 (1 ≤ i ≤ n)

}
.
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a) Every f ∈ L∞(X ,A) can be written as a product f = f1f2 with f1, f2 ∈ F .
b) The σ-algebra generated by F is A.

Proof. a) Let f ∈ L∞(X ,A). Choose g1, g2 ∈ L∞(X ,A) with f = g1g2, for example
g1 = 1 and g2 = f . Then

M(A) := (

∫
A

gjui dµ : i ∈ {1, . . . n}, j ∈ {1, 2}) (A ∈ A)

defines an R2n-valued atomless measure M on (X ,A). The Liapounoff convexity theorem
(see Rudin (1991), Theorem 5.5) yields an A ∈ A with M(A) = (1/2)(M(∅) + M(X )).
For this A, put fj := (2 ·1A−1)gj for j ∈ {1, 2}. Then (

∫
fjui dµ) = 2M(A)−M(X ) = 0,

hence f1, f2 ∈ F , and f1f2 = f .
b) If A ∈ A, then, by a), 1A is a product of two functions belonging to F , and hence

is F -measurable.

2.9 Sufficiency and convex closure. Let be P a model on the measurable space
(X ,A). The convex closure, with respect to setwise convergence, of P is, by definition,
the smallest set P̃ of probability measures on (X ,A) such that P̃ is convex and closed
with respect to setwise convergence (that is: (Pj : j ∈ J) a net in P̃ , P ∈ Prob(X ,A),
limj Pj(A) = P (A) (A ∈ A) ⇒ P ∈ P̃). It can obviously obtained from P by first taking
the convex hull convP of P , and then taking the limits of all nets in convP .

Lemma. Let P and Q be models on (X ,A) with identical convex closures with
respect to setwise convergence. Then the partial orders ⊂P and ⊂Q on the sub-σ-algebras
of A are identical, and P and Q have the same sufficient σ-algebras and the same, if any,
minimal sufficient σ-algebras.

Proof. Follows easily from the definitions. For the statement concerning “sufficient”,
one uses the fact that setwise convergence of a net (Pj) to P implies limj Pjϕ = Pϕ for
every bounded measurable function ϕ.

3 Proofs of the main results

3.1 Proof of Theorem 1.4. Suppose that A is not minimal sufficient for P . Then,
by definition, there is a σ–algebra C ⊂ A, which is sufficient for P and does not satisfy
C = A [P ]. It easily follows that C⊗n

sym ⊂ A⊗n
sym is sufficient for Pn (one may use Lemma 1

of Landers (1972) here). Also, by Lemma 2.7 applied to the pair (A, C) in place of (C,D),
it is not true that C⊗n

sym = A⊗n
sym [Pn]. Hence A⊗n

sym is not minimal sufficient for Pn.

3.2 Proof of Theorem 1.5. “only if”: See Theorem 1.4.

“if”: We proceed in two steps.

Step 1: Without loss of generality, we may assume that there is a probability measure
µ ∈ P which dominates P .

Proof. Let (Pk : k ∈ N) be a sequence in P such that µ :=
∑∞

k=1 2−kPk dominates
P , and let Q be the convex hull of P∪{µ}. Then Q is a model satisfying the assumptions
of Theorem 1.5, and µ ∈ Q dominates Q. Since Q ⊃ P , the claim now follows via the
lemma from 2.9, if we show for m = 1 and for m = n that Qm is contained in the convex
closure, with respect to setwise convergence, of Pm.
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So let m ∈ N and Q ∈ Q. Then there is P ∈ P and λ ∈ [0, 1] such that Q =
λP + (1− λ)µ. (Here convexity of P is used, but only for convenience.) It follows that

Q⊗m = (λP + (1− λ)µ)⊗m

= (λP + (1− λ) lim
K→∞

(1− 2−K)
K∑

k=1

2−kPk)
⊗m

= lim
K→∞

(λP + (1− λ)(1− 2−K)
K∑

k=1

2−kPk)
⊗m,(21)

where the indicated limit relations even hold in total variation, and not merely setwise.
Making now essential use of the convexity of P , we observe that the probability measures
on the right of “lim” in (21) belong to Pm. Hence Q⊗m indeed belongs to the convex
closure with respect to setwise convergence of Pm.

Step 2: Let C be minimal sufficient for P . Let µ be as in Step 1. For each P ∈ P,
let fP be a µ-density of P , with fP = 1 in case P = µ, and let F := {fP : P ∈ P}. Then,
by Bahadur’s version of a theorem of Lehmann & Scheffé [see Torgersen (1991), p. 69],
the σ-algebra σ(F) is minimal sufficient for P . Hence C = σ(F) [P ]. By Lemma 2.7, we
can assume that

C = σ(F).

Since µ⊗n ∈ Pn, the σ-algebra

E0 := σ(f⊗n : f ∈ F)

is minimal sufficient for Pn. By the convexity of P , we have E0 = E [P ] with

E := σ((
k∑

j=1

λjfj)
⊗n : k ∈ N, fj ∈ F , λj ∈ [0, 1],

∑
λj = 1).

By 2.5 b) applied to the convex hull convF of F , we have E = (σ(convF))⊗n
sym =

(σ(F))⊗n
sym = C⊗n

sym.

3.3 Proof of Theorem 1.6. Since P from (1) is convex and dominated, Theorem
1.5 will yield the stated conclusion if we prove that A is minimal sufficient for P . This
will be done in three steps.

Step 1: There is no loss in assuming that cu = 0 (u ∈ U).

Proof. Replace each u by u− cu.

Step 2: There is no loss in assuming that µ ∈ P .

Proof. Since P is nonempty and dominated, there is a sequence (Pn) in P such that
{Pn : n ∈ N} and P have the same nullsets. Let bn :=

∫ ∑
u∈U |u(x)| dPn(x) and choose

a sequence (εn) in ]0,∞[ with
∑∞

1 εn = 1 and
∑∞

1 εnbn < ∞. Then
∑∞

1 εnPn belongs to
P and dominates P .

Step 3: We assume that cu = 0 (u ∈ U) and that µ ∈ P . Let us put

F :=

{
f ∈ L1(X ,A, µ) : f ≥ 0,

∫
f dµ = 1,

∫
fu dµ = 0 (u ∈ U)

}
.
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(The notation L1 and L∞ here and below is as in 2.8.) Using Bahadur’s theorem again
(compare Step 2 in 3.2), we observe that C := σ(F) is minimal sufficient for P . Put

G :=

{
g ∈ L∞(X ,A) :

∫
gu dµ = 0 (u ∈ {1} ∪ U)

}
.

Since 1 ∈ F , we have F ⊃ {1 + g : g ∈ G, g ≥ −1} and hence

C ⊃ σ(g : g ∈ G, g ≥ −1) = σ(G).

By the lemma from 2.8, we have σ(G) = A. Hence C = A.
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