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TN, (w) = Tn(z1,...,2n). We shall say that a statistic Tr, is asymptotically normal if there
exists a positive function o2(8), 6 € ©, such that for each 8 € ©,

Jim Po(n'/>(Tn - 6) <o) = @(%), zeR',

where ®(z) is the standard normal d.f. The property of asymptotic normality under rather
general conditions is inherent in many statistics. As an example, we can mention the state-
ment on the asymptotic normality of the maximum likelihood estimators from [6] which is
possibly most known. The transformation of this property under a random sample size is
described by the following statement which improves some statements from [7].

THEOREM 3. Let a statistic T, be asymptotically normal and let (3) hold. Then for
the existence for each 0 € © of a d.f. F(x,0) such that Pg(lcl/2(TN,c —-0) < )= F(z, 0)
(k — 00), it is necessary and sufficient that there exists a family of d.f.’s G = {G(z;0): 0 € ©}
satisfying the following conditions:

1) G(z;0)=0, <0, 6€6;

2) F(z;0) = [5° ®(u'/?x/0(8)) dG(v; ), = € RY, 0 € ©;

3) Po(Ni < kx)= G(x;0) (k — o0), § € O.
Moreover, if the d.f.’s of the r.v.’s N do not depend on 8, then the d.f. G also does not
depend on 0, i.e., the family G consists of a single element.

Proof. By virtue of the identifiability of the family of scale mixtures of normal laws, the
proof reduces to Theorem 1 with by = k_l/z, Sr =Tk — 0, and ax = 0, k 2 1. The main
steps of the proof are similar to those of the preceding theorem. The theorem is proved.
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OPTIMAL UNBIASED ESTIMATORS IN ADDITIVE MODELS WITH
BOUNDED ERRORS ARE DETERMINISTIC*

L. MATTNER! anp M. REINDERSH

Abstract. In an additive model X = 9 +¢, ¥ € © C R¥, let the errors ¢ have a compactly
supported but otherwise arbitrary known joint distribution. Let g be a uniformly minimum variance
unbiased estimator for its own expectation y(d). We show that under mild regularity conditions, g
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is deterministic: for every ¥ € O, g(X) = y(d) almost surely. Our proof uses a lemma on entire
quotients of Fourier transforms which might be of independent interest.

Key words. characteristic function, entire function, exponential type, Fourier transform, linear
model, location parameter, shift model, uniformly minimum variance unbiased estimator

1. Introduction and results. Given a statistical model P = {Py: ¥ € O} consisting
of probability measures Py on a common measurable space, it is often difficult to decide
which functions y: © — R, if any, possess an uniformly minimum variance unbiased (UMVU)
estimator. It is therefore of interest to know criteria which for some models permit us to
conclude that, in fact, only trivial UMVU estimators exist.

For arbitrary models P, Bahadur reduced the existence question for bounded nontrivial
UMVU estimators to the question of whether there are any UMVU indicator variables (see,
e.g., §2 of [10]). This is not always an essential simplification of the problem (see, e.g., §2.2
below, where the assumption “g is {0, 1}-valued” would not be of help).

Thus far, only a short list of interesting, natural examples of models admitting only
trivial UMVU estimators seems to be available from the literature. The first example, due to
Lehmann and Scheffé [7, pp. 3256-327] and completed in [4, Thm. 5.1], has © = R and Py = n-
fold product of the uniform distribution over the interval [¢9,9 +1]. A discrete version can be
found in [6, p. 79]. Examples where P is an algebraic exponential family can be deduced from
[5, Thm. S.3.1]. Unfortunately, no concrete examples are given in [5]. This has been done,
according to [6, p. 89], by Unni [12]. Sapozhnikov [11] gave an interesting example occurring
when sampling from a finite population with replacement, leading to binomial distributions
with a discrete parameter space. Sapozhnikov’s method is extended from discrete sample
space to more general ones in [3], where, however, no natural example is treated.

In this paper, we consider additive models with bounded errors. We show that every
sufficiently regular UMVU estimator is deterministic (in the sense of Definition 2 below). In
reasonable cases, it follows that the function 7 being estimated is constant (see Remark 2
below).

DEFINITION 1. P = {Py: ¥ € O} is an additive model if for some positive integer k, we
have © C RF and Py = P(- —9) for some probability measure P on the Borel sets of R*.
P is called the (joint) error distribution.

In other words, we consider observing X = 9 + ¢, where 9 € © C RF is an unknown
parameter and the joint distribution P of the errors € is known.

DEFINITION 2. A Borel function g: R* — R. is called deterministic (with respect to P)
if for some v: ©® - R and every ¥ € ©

g(z) = v(9) Pg-almost surely.

THEOREM. Let P be an additive model. Assume that the error distribution P has compact
support. Let g be a UMVU estimator for its own expectation. If for each ¥ € ©, g is bounded
on the support of Py, then g is deterministic.

Remark 1. Observe that no restriction is imposed on ©® ¢ R*. Thus the theorem
applies in particular to every linear model with bounded errors by taking © as a suitable
linear subspace of R¥. The special choice © = {(a,...,a): a€e R} and P=pu® - - @ pu for
some probability measure p on R leads to models for independent and identically distributed
observations from a full location family considered in [4]; see Remark 4 below.

Remark 2. 1If in an additive model P the distribution P has a density f with respect
to Lebesgue measure and if © is connected, then any deterministic g is in fact constant with
respect to P, i.e., the v in Definition 2 has to be a constant function.

To prove this, note that

191_'1_}111}0/f(au—ﬂ)f(av——190)d:1:=/fz(:z:—ﬁo)alav>O.
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(Use the continuity of translation in L? if [ f?(z)dz < oo. Otherwise, first consider f An and
then let n tend to infinity.) Hence for |9 —9o| sufficiently small, {f(-—9) > ON{f(-—¥0) > 0}
has positive Lebesgue measure. This implies y(¢) = v(J0), i.e., 7 is locally constant.

Remark 3. Obvious examples of nonconstant functions  in additive models P admit-
ting deterministic UMVU estimators are as follows:

(i) P is the Dirac measure and v and © are arbitrary;

(i) k=1, P is concentrated on the integers, « is an arbitrary 1-periodic function, and
© is arbitrary;

(iii) k=3-2 with P =puQ®pu® p, p is uniform distribution on the unit circle (not disk)
in the plane, and © = {(a, @, @): @ € R2} is arbitrary.

An attempt to describe all such examples does not appear to be worthwhile.

Remark 4. The regularity condition imposed on g is rather weak and, e.g., satisfied
by any continuous g. This should be compared with the results due to Bondesson [4], most
of which apply to models P with noncompactly supported P but impose global growth
conditions or even structural assumptions on g (see [4, Thm. 3.3 and 5.2]).

In the case when P is a full shift model (i.e., ©® = Rk) and is sufficiently regular, we are
able to drop the regularity condition imposed on g.

COROLLARY. Let P be an additive model with © = R¥. Assume that the error distribu-
tion P has a compactly supported density f with respect to Lebesgue measure. Assume further
that the set {x € R*: f(z) > 6} has nonempty interior for some § > 0. Let g be a UMVU
estimator for its own expectation. Then g is constant almost surely with respect to P.

Remark 5. Our results contain the Lehmann-Scheffé-Bondesson example mentioned
above, provided that only locally bounded estimators are considered in the case n = 2. This
follows from Remarks 1 and 2 and the corollary. Without any restriction on the estimators,
our results are easily seen to contain Lehmann’s discrete example mentioned above and also
Theorem 3.4 in [4].

Remark 6. Our proof of the theorem given below shows in fact that for fixed 9o € ©
it suffices to assume that g is locally minimum variance unbiased in ¥p and bounded on the
support of Py, in order to conclude that g is almost surely constant with respect to Py,. We
do not know whether a similar strengthening of the corollary is possible.

2. Proofs.

2.1. Preliminaries for the proof of the theorem. An entire function f is of expo-
nential type (or, more precisely, of exponential type ) if
7 = limsup log M(r, f) < o0,
r—00 r
where M(r, f) = max{|f(¢)|: |¢| = r} (see [2, p. 8]). The proof of the theorem is based on
the following lemma. It uses the fact that a measure p with compact support supp 4 has a
Fourier transform fi(¢) = [ e*“®dpu(x) which is an entire function of exponential type growing
quite regularly.

LEMMA 1. Let u, v be complex measures on the Borel sets of R having compact support.
Assume that (i) the convez hull of supp v is a subset of the convex hull of supp p, (ii) U/
is an entire function. Then U/l is an entire function of exponential type zero.

Proof. We need some definitions and results from the theory of entire functions. The
indicator function hy of an entire function of exponential type is given by

ig
hy(¢) = timsup LD 0 < 4 < o)

(see [2, p. 66]). hy is (the angular part of) the supporting function of some nonempty compact
convex set K(f) C C, the indicator diagram of f, i.e.,

hs(¢) = max {Re (Ce™): ¢ € K(f)}
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(see [2, pp. 70-72]). f is of completely regular growth if there is a set E C (0,00) of linear
density zero such that

¢
Lo loglf(re'®)]

r=¥c0
r¢E r

= hf(¢) uniformly in¢

(see [8, pp. 139 and 96]).
Now let [a, b] ([c,d]) be the convex hull of supp u (supp v, respectively). It follows from
[9, Thm. 3] that & and ¥ are entire functions of exponential type and

1) h,;(%) = —a, h,;(%”) =b, h;(%) =—c, h;(%”) =d.

Theorem 11 in (8, p. 251] states that & and ¥ are of completely regular growth and that
their indicator diagrams are intervals on the imaginary axis. Because of (1), we have K () =
[~ib, —ia] and K(¥) = [—id, —ic]. The assumption suppr C supp p implies K(¥) C K(fi)
and hence hg (@) < hp(®) (0 £ ¢ < 2m). Let F := U/fi. Since i and ¥ are of completely
regular growth, there is a set £ C (0, 00) of linear density zero such that

i¢
lim log | F(re*?)|

T¢E

= ho(9) — ha(¢) S 0

uniformly in ¢. Hence

(2) lim log M(r, F) _ 0.

r¢E

It is now easy to show that (2) holds without the restriction r ¢ E because M(r, F') is an
increasing function of r, and since (r,2r)\E is nonempty for all sufficiently large r. This
proves the lemma.

We also need the following lemma (see, e.g., [8, p. 51]).

LEMMA 2. Let f be an entire function of exponential type zero. If f is bounded on some
line then f is constant.

2.2. Proof of the theorem. Fix 99 € © and t € R*. For ¢ € C, let
PO = Poy(¢t) = [ 54DaPo, @), 0(0) = 3Py (¢t) = [ 4 g(a) Py, (a),

where (t,z) denotes the usual inner product of ¢,z € RE.
We want to show that

®3) P(¢) =7(P) p(¢) ((€C).

We first show that the meromorphic function /¢ has no poles. To this end, let { be a
p-fold zero of ¢, i.e.,

. l 4
0=p®() = / (it,2)) =) dPyy (@) (1=0,...,p~1).
It follows that for every ¥ € RF,

/ (i(t, $>>leiC(t,m)dP0(x) - / (i(t,:z: +9— 190>)leiC(t,:c+19—-190)dp190(x)

! . ,
= eidte=00) 3 @ (19 = 90))' 7P =0
j=0

t=0,...,p=1).
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In particular, z —(i(t, z))'e*¢{®) is an unbiased estimator of zero for the model P for
l=0,...,p—1. Since g is a UMVU estimator, this implies (see, e.g., [6, p. 77])

0= [ (itt.2)) e g(z) dPay (@) = ¥O(0) (1=0,....p- ).
Thus ¢ is a zero of ¥ with multiplicity at least p. Hence

(4) g is an entire function.

It is easy to see that ¢ = i and ¥ = U, where y is a probability measure and v is a
signed measure on the Borel sets of R, both having compact support and satisfying

(5) supp v C Supp p.

We conclude from (4), (5), and Lemma 1 that ¢ /¢ is of exponential type zero.
Since g is bounded on the support of Py, we have for every n € R

[utin)| = [emeo

o(2)] 4Py, (2) 5 sup { (@] @ € supp Po, | olin).

Hence 9/¢ is bounded on the imaginary axis. By Lemma 2, ¥/¢ is constant. Since
$(0)/9(0) = 7(90), (3) is proved.

Setting ¢ = 1 in (3), we see that the Fourier transforms of the signed measures gPg,
and (do) Py, are equal at t. Since t € R* was arbitrary, gPs, = (%) Ps, and thus
g(x) = (V) Py,-almost surely.

2.3. Proof of the corollary (sketch). First conclude that g is locally integrable with
respect to Lebesgue measure. Take any compactly supported continuous function o R* - R
and consider the convolution g, := a * g. Check that g, is a continuous UMVU estimator
for o * y. The theorem together with Remark 2 shows that go is a constant function. The
assertion follows by letting o tend to the Dirac measure.
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paper.
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SPECTRAL PROPERTIES OF SAMPLE COVARIANCE MATRICES*
V. 1. SERDOBOLSKIIt
(Translated by the author)

Abstract. The expectation value of the resolvents of sample covariance matrices and the variance
of their matrix elements are investigated. It is assumed only that variables have zero expectation
values and the maximal fourth moment of variables exists. The principal spectral equations obtained
earlier only in the form of limit formulas are derived with upper estimates of the remainder terms,
accurate up to absolute constants. The remainder terms prove to be small for large sample size and
a small value of a special measure of the quadratic forms variance.

Key words. spectral functions, sample covariance matrix, multivariate analysis, increasing
dimension

1. Introduction. Let x € R™ be an observation vector, X = (x1,...,Xn) be a sample
of size N, X be the sample average vector, and

N N
S=NY xmxm, C=N"'Y (xm %) (xm —%)"
m=1

m=1

be sample covariance matrices constructed by the known expectation vector 4 = Ex = 0
(matrices S) and by the unknown g (matrices C). In 1967, Marchenko and Pastur [1]
investigated spectral properties of the resolvent of operators that can be represented by the
Gram matrices S of increasing dimensions n — oo when N = N(n) — co and n/N — X > 0.
They established the convergence of the normed traces of these resolvents and obtained the
limit expressions. In 1968-1970, Kolmogorov and Blagoveshchenskii suggested using such
asymptotics for studying the spectral properties of the sample covariance matrices and solving
applied problems [2], [3]. In [2], for x ~ AM(0,I), where (and below) I is identity matrix, the
existence of limits My = plimy— oo tr C¥ was established and the recurrent relations for
My, were found. In (3], for two normal populations with common covariance matrix, the
asymptotic expansion was obtained and a limit formula for probability of classification errors
using Wald’s sample linear discriminant function was derived. In the monographs by Girko,
[4] (1975) and [5] (1988), the limit theory of spectral properties of increasing dimensions
random matrices from wide classes was developed.

For matrices of the form S in [4] and [5], a remarkable feature was established: assuming
components of the vector x to be independent, under some weak restrictions of the Lindeberg
condition type, the matrix elements of the resolvent of S converge in probability to functions
that depend only on the limit value of the ratio n/N and the limit spectral functions of
matrices ¥ = ES = cov (x, x) independently of the other distribution characteristics. In [6]
and [7] (1983), for normal distributions under the same asymptotics, a “principal spectral
equation” (of the form of (4) and (5); see below) was found, relating functionally the limit
spectral functions of the matrices X, S, and C. (In the normal case, the matrices C may be
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