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Abstract. This is a contribution to the theory of sums of independent random variables at
an algebraico-analytical level: Let Prob∞(R) denote the convolution semigroup of all prob-
ability measures on R with all moments finite, topologized by polynomially weighted total
variation. We prove that the cumulant sequence κ = (κ� : � ∈ N), regarded as a function
from Prob∞(R) into the additive topological group R

∞ of all real sequences, is universal
among continuous homomorphisms from Prob∞(R) into Hausdorff topological groups, in
the usual sense that every other such homomorphism factorizes uniquely through κ .

An analogous result, referring to just the first r ∈ N0 cumulants, holds for the semigroup
Probr (R) of all probability measures with existing rth moments.

In particular, there is no nontrivial continuous homomorphism from Prob(R), the con-
volution semigroup of all probability measures, topologized by the total variation metric,
into any Hausdorff topological group.

1. Introduction and result

Throughout this paper, let r ∈ N0 = {0, 1, 2, . . . } or r = ∞. If r is finite, let
Probr (R) denote the set of all probability measures on R with existing rth moments,
topologized by the weighted total variation metric

dr(P,Q) :=
∫
(1+ |x|)r d|P −Q|(x) (

P,Q ∈ Probr (R)
)
. (1)

In particular, Prob0(R) is just the set of all probability measures on R, topologized
by the ordinary total variation metric. If r = ∞, let Probr (R) = Prob∞(R) =⋂
�∈N0

Prob�(R) denote the set of all probability measures on R with all moments
finite, topologized by the family of metrics (d� : � ∈ N0). Then each Probr (R) is
a topological semigroup with respect to convolution, compare 2.4 below. What are
the continuous homomorphisms from Probr (R) into Hausdorff topological groups?
A classical one is the sequence of the first r cumulants, defined as follows. For
� ∈ N = {1, 2, 3, . . . }, let κ� : Prob�(R) → R be the function assigning to
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P ∈ Prob�(R) its �th cumulant, that is,

κ�(P ) := i−�
(
D� log ◦P̂

)
(0), (2)

where P̂ (t) := ∫
eitx dP (x) for t ∈ R, log ◦P̂ is defined in some neighbourhood of

zero to be the continuous function g with g(0) = 0 and exp ◦g = P̂ , andD denotes
differentiation. Regard the set Rr of all real sequences (a� : 1 ≤ � < r+1) of length
r as a topological group, with the usual coordinatewise addition and the product
topology. Thus R

0 = {()} is just the trivial topological group while R
∞ = R

N con-
sists of all infinite real sequences, in accordance with the convention∞+ 1 = ∞.
Then

κ(r) := (κ� : 1 ≤ � < r + 1), (3)

regarded as a function from Probr (R) into R
r , is a continuous homomorphism into

a Hausdorff topological group. The purpose of this paper is to show that κ(r) is
universal in the following sense.

Theorem 1.1. If G is a Hausdorff topological group and if ϕ : Probr (R) → G

is a continuous homomorphism, then there is a unique continuous homomorphism
ψ : R

r → G such that ϕ = ψ ◦ κ(r).
This is proved in Section 3 below, after the preparatory Section 2. Turning to

corollaries now, let us first emphasize the particular case of Theorem 1.1 where
r = 0.

Corollary 1.2. There is no nonconstant continuous homomorphism from Prob(R)
into any Hausdorff topological group.

By specializing the group G in Theorem 1.1 to the multiplicative group T =
{z ∈ C : |z| = 1} or to the additive group R , we reobtain the main results of
Mattner (1999).

Corollary 1.3 (Mattner, 1999). Let G and ϕ be as in Theorem 1.1.

(a) If G = T, then

ϕ(P ) = exp
(
i

r∑
�=1

c�κ�(P )
) (

P ∈ Probr (R)
)

for some uniquely determined sequence of real numbers (c� : 1 ≤ � < r + 1) with
finite support.

(b) If G = R, then

ϕ(P ) =
r∑
�=1

c�κ�(P )
(
P ∈ Probr (R)

)

with the c� as in part (a).
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Proof of Corollary 1.3. We recall a few well known facts. LetE be R
r , considered

as a topological R-vector space with the usual coordinatewise operations and co-
ordinatewise convergence. Then the dual space of E consists of all functionals ψ
of the form

ψ(x) =
r∑
�=1

c�x� (x ∈ R
r ) (4)

with some sequence of real numbers (c� : 1 ≤ � < r + 1), uniquely determined
by ψ , with finite support, that is, with {� : c� �= 0} finite also in case r = ∞. This
can be proved by elementary arguments, or by applying the Riesz representation
theorem about the dual of C(X ) to the particular locally compact Hausdorff space
X = {� ∈ N : 1 ≤ � < r + 1}.

Every continuous homomorphism from the additive group of a topological
R-vector space into the additive group of R is automatically a linear functional.
Hence every continuous homomorphism ψ from (Rr ,+) to (R,+) is of the form
(4), with the c� as stated.

Also, every continuous homomorphism from the additive group of a topological
R-vector space into the circle group T is of the form x �→ exp

(
iψ(x)

)
where ψ

is a continuous linear functional, uniquely determined by the homomorphism. See
Hewitt & Ross (1979, (23.32.a)) for a proof.

By combining the above with Theorem 1.1, we easily obtain Corollary 1.3. �	
Remark 1.4. (a) We refer to Mattner (1999) for corollaries to Corollary 1.3, for
counterexamples illuminating the continuity assumptions, and for historical notes
and related references. The early history of cumulants is described in more detail
by Hald (2000).
(b) The initial inspiration for Mattner (1999) and thereby also for the present work
came from Ruzsa & Székely (1988). Their book in particular presents an otherwise
unpublished theorem of Halász, which essentially is the case r = 0 of Corollary
1.3 (a), or, in an equivalent formulation, Corollary 1.2 restricted to locally com-
pact groups instead of general Hausdorff groups. Here “essentially” refers to a
more restrictive continuity assumption imposed by Halász, namely continuity with
respect to weak convergence rather than convergence in total variation. The pres-
ent Theorem 1.1 appears to be a desirable generalization of Halász’ theorem, and
perhaps final as far as probability measures on R are concerned.
(c) One may wish to extend Theorem 1.1 to more general groups in place of R.
The extension to R

d with d ∈ N is immediate, just leading to more indices every-
where. Compact groups are without interest in the present setting of all probability
measures satisfying some growth restriction: If G is a compact group, then U
:= normalized Haar measure is an absorbing element of Prob(G), meaning that
U ∗P = U for every P ∈ Prob(G), and it follows that every homomorphism from
Prob(G) into a group maps every P to the neutral element. An extension of The-
orem 1.1 to all locally compact abelian groups should pose no serious difficulties.
The real challenge is to discuss interesting nonabelian and noncompact cases. For
example, is there an analogue of Corollary 1.2 for the general linear groups?
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2. Auxiliary analytic facts

This section introduces some notation and collects for subsequent use a few more
or less standard facts, without any claim to originality.

2.1. Continuous selection of thresholds. Let X be a paracompact topological
space and let (ft : t ∈ [1,∞[) be a family of {0, 1}-valued functions on X . Then
the following conditions are equivalent:

(i) For every x0 ∈ X , there exists a neighbourhood U of x0 and a t0 ∈ [1,∞[
with

ft (x) = 1 (x ∈ U, t ≥ t0). (5)

(ii) There exists a continuous function t0 : X → [1,∞[ with

ft (x) = 1
(
x ∈ X , t ≥ t0(x)

)
.

Remark. We recall that a Hausdorff topological space is paracompact iff every open
cover has a locally finite continuous partition of unity subordinated to it, as used
in the proof below. In this paper, namely in the proof of 2.4 (d), we will use the
above result with “metric” in place of “paracompact topological”, which is valid
since every metric space is paracompact. We refer to (Bourbaki 1989, Chapter 9,
§4) or Engelking (1989, Section 5.1) for appropriate background information.

Proof. (i)⇒ (ii): Assuming (i), we choose for every ξ ∈ X an open neighbourhood
Uξ of ξ and a tξ ∈ [1,∞[ with ft (x) = 1 for x ∈ Uξ and t ≥ tξ . Using the para-
compactness of X , we get a locally finite continuous partition of unity (ϕξ : ξ ∈ X )
subordinated to the open cover (Uξ : ξ ∈ X ) of X . This means, we recall, that for
each ξ the function ϕξ is continuous, nonnegative and with support contained in
Uξ , that every x ∈ X has a neighbourhood V such that ϕξ = 0 on V for all but
finitely many ξ ∈ X , and that

∑
ξ∈X ϕξ = 1. Let us put

t0(x) :=
∑
ξ∈X

tξ ϕξ (x) (x ∈ X ).

Then t0 : X → [1,∞[ is continuous. Let x ∈ X and t ≥ t0(x). As � :={
ξ ∈ X : ϕξ (x) > 0

}
is finite, we may pick a ξ0 ∈ � with tξ0 = min

{
tξ : ξ ∈ �}

.
Then

t0(x) ≥
∑
ξ∈�

tξ0ϕξ (x) = tξ0

∑
ξ∈�

ϕξ (x) = tξ0

and hence t ≥ tξ0 . As also x ∈ Uξ0 , we get ft (x) = 1.
(ii)⇒ (i): Assume (ii) and let x0 ∈ X . Choose a neighbourhood U of x0 such

that t0(x) ≤ t0(x0)+ 1 for x ∈ U . Then (5) is true for the present x0 and U , with
t0 := t0(x0)+ 1. �	
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2.2. The r0 notation. Let us recall that always r ∈ N0∪{∞} in this paper. In what
follows, we will meet finite or infinite sequences of complex numbers indexed by
integers starting from 1 or starting from 0. To distinguish sets of such sequences
conveniently, we use the standard notation

C
r =

{
C
{1,... ,r} if r ∈ N0

C
N if r = ∞

along with the nonstandard one

C
r0 :=

{
C
{0,... ,r} if r ∈ N0

C
N0 if r = ∞.

2.3. The topological vector space Cr (R) and the Taylor map. As usual, let Cr (R)
denote the vector space of all C-valued and r times continuously differentiable
functions on R, topologized by convergence of each derivative, uniformly on com-
pact sets. See, for example, Rudin (1991). Again as usual, consider C

r0 as a vector
space topologized by coordinatewise convergence. Let T : Cr (R) → C

r0 be the
map assigning to each f ∈ Cr (R) its sequence of Taylor coefficients, that is,

Tf = Trf := (f (k)(0) : k ∈ N0, k < r + 1)
(
f ∈ Cr (R)) (6)

where f (k) stands for the kth derivative. Obviously, T is a continuous linear oper-
ator. We will need the following three further facts about T .

(a) Borel’s theorem. T is surjective.

(b) Closure of the null germ. The closure in Cr (R) of

NG := {
f ∈ Cr (R) : f |U = 0 for some neighbourhood U of 0

}

is

NT := {
f ∈ Cr (R) : Tf = 0

}
. (7)

(c) Identification of Cr (R) modulo the null space of the Taylor map.
Abbreviating NT from (7) by N , let π : Cr (R)→ Cr (R)/N be the quotient map.
Then

S
(
π(f )

)
:= T (f ) (

f ∈ Cr (R))

defines an isomorphism S : Cr (R)/N → C
r0 of topological vector spaces.

Proof. (a) This is nontrivial only in the case r = ∞, which is treated, for example,
in Donoghue (1969) and Trèves (1967).

(b) Trivially NG ⊂ NT . Also NT , being the null space of the continuous operator
T , is closed. Hence the closure NG of NG is contained in NT .
To prove that NT ⊂ NG, let f ∈ NT . Choose ω ∈ C∞(R) with supp ω ⊂
[−1, 1] and

ω(x) = 1 (|x| ≤ 1

2
). (8)
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Put

gn(x) := f (x)ω(nx) (x ∈ R). (9)

Then gn→ 0 in Cr (R), since for every fixed k < r + 1, we have

sup
x∈R
|g(k)n (x)| = sup

|x|≤1/n

∣∣∣∣∣∣
k∑
j=0

(
k

j

)
f (j)(x)nk−jω(k−j)(nx)

∣∣∣∣∣∣ = o(1) (n→∞)

because of sup|x|≤1/n |f (j)(x)| = o(( 1
n
)k−j ), the latter following from Taylor’s

formula with k − j derivatives applied to f (j). Now fn := f − gn ∈ NG by
(8) and (9), and fn→ f in Cr (R). Hence f ∈ NG.

(c) S is well defined and injective by the obvious chain of equivalences

π(f ) = π(g) ⇔ f − g ∈ N ⇔ T (f − g) = 0 ⇔ Tf = T g.
It is similarly obvious that S is linear. S is surjective since T = S◦π is surjective by
Borel’s theorem (a). Continuity of S follows from continuity of T and the definition
of the quotient topology. Finally, since Cr (R) is a Fréchet space, so is its quotient
Cr (R)/N . Since C

r0 is Fréchet as well, the open mapping theorem yields openness
of S. �	

2.4. The weighted algebras M1
r (R). Let us recall the classical Banach algebra

M1(R) := all bounded complex measures on R,

with convolution as multiplication and with the norm ‖ · ‖ defined by

‖µ‖ :=
∫

1 d|µ| (µ ∈ M1(R), (10)

|µ| := total variation measure of µ.

By the standard identification of integrable functions with complex measures,
L1(R) is a subalgebra of M1(R), and the usual norm on L1(R) is the restriction
of the norm ‖ · ‖ from (10). We will need the polynomially weighted subalgebras
M1
r (R) of M1(R), defined for r ∈ N0 ∪ {∞} by

M1
r (R) :=

{
µ ∈ M1(R) :

∫
|x|l d|µ|(x) <∞ (l ∈ N0, l < r + 1)

}

and topologized by the family of norms (‖ · ‖� : � ∈ N0, � < r + 1) with

‖µ‖� :=
∫
(1+ |x|)� d|µ|(x) (

µ ∈ M1
r (R)

)
.

Obviously, Probr (R) is a topological subspace of M1
r (R). If r is finite, then it fol-

lows from the inequality (1 + |x + y|)r ≤ (1 + |x|)r (1 + |y|)r that M1
r (R) is

indeed an algebra and, together with the norm ‖ · ‖r , in fact a Banach algebra. This
implies that M1∞(R) is a Fréchet algebra. In particular, this shows the continuity
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of the convolution on Probr (R), taken for granted in the introduction. We further
note that the map µ �→ |µ| is continuous onM1

r (R). Also, if r ≤ s, thenM1
s (R) is

continuously embedded in M1
r (R).

We now turn to the Fourier transform defined onM1(R), and hence on each of
the subsets M1

r (R), by

µ̂(t) :=
∫
eitx dµ(x) (t ∈ R).

For µ ∈ M1
r (R), we have µ̂ ∈ Cr (R), and the map M1

r (R) � µ �→ µ̂ ∈ Cr (R)
is continuous. We will need some kind of continuity of the inverse. The follow-
ing simple and far from optimal fact is sufficient for our present purposes. We
consider

G :=
{
f ∈ Cr+1(R) : supp f ⊂ [−1, 1]

}
(11)

with the topology inherited from Cr+1(R).
G is contained in the image ofM1

r (R) under the Fourier transform. The restric-
tion to G of the inverse Fourier transform is continuous.

Proof. The case r = ∞ follows from the case where r is finite. The latter case is
obvious from the elementary theory of Sobolev spaces as given in Rudin (1991,
Chapter 8) or Taylor (1996, Chapter 4): The inclusion map from G to the Sobo-
lev space Hr+1(R) is continuous. The inverse Fourier transform from Hr+1(R)

to the weighted L2 space L2
r+1 := L2((1 + |x|)2(r+1)dx) is a homeomorphism.

Finally, the inclusion map from L2
r+1 to M1

r (R) is continuous by an application of
Cauchy-Schwarz:

∫
|h(x)|(1+ |x|)r dx =

∫
|h(x)|(1+ |x|)r+1 · (1+ |x|)−1 dx

≤ ‖h‖L2
r+1
·
(∫

(1+ |x|)−2 dx

)1/2

�	

2.5. The multiplication operators M	 on M1(R). We will need in particular the
following refinement (d) of the simple property (13) of the multiplication (or scal-
ing) operators M	 defined for 	 ∈ ]0,∞[ on M1(R) by (M	µ)(B) := µ( 1

	
B), for

B ⊂ R Borel. In the special case of f ∈ L1(R), we have of course (M	f )(x) =
1
	
f ( x

	
), for x ∈ R.

(a) If r ∈ N0∪{∞} and ifµ ∈ M1
r (R) is absolutely continuous with respect

to Lebesgue measure, then the map ]0,∞[� 	 �→ M	µ ∈ M1
r (R) is continuous.

(b) EachM	 is an isometric algebra automorphism ofM1(R), with inverse
M1/	.
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(c) Let µ ∈ M1(R) and g ∈ L1(R). Then

lim
	→0

(M	µ) ∗ g = µ(R) · g (12)

lim
	→∞

(
µ ∗M	g − µ(R) ·M	g

) = 0 (13)

with respect to the topology of M1(R).

(d) Let g ∈ L1(R) and let ε > 0. Then there exists a continuous function
	 : M1(R)→ [1,∞[ with

‖µ ∗M	(µ)g − µ(R) ·M	(µ)g‖ < ε
(
µ ∈ M1(R)

)
.

Remark. Relation (13) becomes false ifM1(R) and L1(R) are replaced byM1
r (R)

and M1
r (R) ∩ L1(R) with r ≥ 2.

Proof. (a), (b) Obvious.
(c) Relation (12) is well known. For example, Reiter (1968, page 6) proves

the slightly less general result where L1(R) replacesM1(R), in different notation.
Sketch of proof: The special case where g is continuous with compact support is
easy. Since such functions are dense inL1(R) and since ‖M	µ‖ = ‖µ‖ is uniformly
bounded in 	, the general case follows by approximation.

Relation (13) follows from (12) and from part (b), starting with

µ ∗M	g − µ(R) ·M	g = M	

(
(M1/	µ) ∗ g − µ(R) · g

)
.

(d) For every	 ∈ ]0,∞[, the linear mapM1(R) � µ �→ µ∗M	g−µ(R)M	g =:
�	µ has norm ‖�	‖ ≤ 2‖g‖. Thus the functions (�	 : 	 ∈ ]0,∞[) are equicon-
tinuous and, by part (c), converge to 0 pointwise as 	→∞. Hence, for every ε > 0
and every µ0 ∈ M1(R), there exists a neighbourhood U of µ0 and a 	0 ∈ [1,∞[
with ‖�	µ‖ < ε for µ ∈ U and 	 ≥ 	0. An application of 2.1, to X := M1(R)

and f	(µ) := 1 if ‖�	µ‖ < ε and f	(µ) := 0 otherwise, yields the claim.

Proof of the remark. Let us considerµ := N0,1−δ, g := N0,1, withNa,b denoting
the normal distribution with mean a and variance b. Then µ ∗M	g = N0,	2+1 −
N0,	2 and µ(R) = 0, and hence ‖µ ∗ M	g − µ(R) · M	g‖2 ≥ |

∫
x2d

(
µ ∗

M	g
)
(x)| = 1. As µ ∈ M1∞(R), this proves the remark for every r ≥ 2. �	

3. Proof of the main theorem

We prepare the proof of Theorem 1.1 with the following three lemmas, the crucial
one being 3.1. We put for k ∈ N0 ∪ {∞}

Ckherm(R) :=
{
f ∈ Ck(R) : f is hermitean, that is, f (t) = f (−t) (t ∈ R)

}
.
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3.1. Quotients of characteristic functions. We assume that r ∈ 2N0 ∪ {∞} =
{0, 2, 4, . . . } ∪ {∞} and consider

F :=
{
f ∈ Cr+1

herm(R) : f (0) = 1
}
, (14)

with the topology inherited from Cr+1(R).

(a) If f ∈ F , then there exist P,Q ∈ Probr (R) with f Q̂ = P̂ .

(b) Continuous selection in part (a). There exists a continuous map F �
f �→ (Pf ,Qf ) ∈ Probr (R)× Probr (R) such that

f Q̂f = P̂f (f ∈ F). (15)

In particular, if f ∈ F and if (fn) is a sequence in F converging to f in the Cr+1(R)

topology, then there exist P,Q,Pn,Qn ∈ Probr (R) with Pn→ P ,Qn→ Q, with
respect to the Probr (R) topology, and such that f Q̂ = P̂ and fnQ̂n = P̂n for all
n.

Remark. This kind of lemma goes back to Ruzsa & Székely (1983, 1985, 1988),
who prove versions of part (a) in the case r = 0. They do not require any differen-
tiability assumption on f , but assume instead that f is the Fourier transform of a
bounded signed measure. A version of both parts in the case r = ∞ is proved in
Mattner (1999, subsection 2.5).

Proof. It is enough to prove the first sentence in part (b). We will use notation and
facts from 2.4 and 2.5.

Step 1: Preparation. We fix a T ∈ Prob∞(R) with supp T̂ ⊂ [−1, 1]. We
further fix a β ∈ ]0, 1[ and a continuous map

M :=
{
µ ∈ M1(R) : µ real, µ(R) = 1

}
� µ �→ Rµ ∈ Prob∞(R)

satisfying, for every µ ∈M,

‖(µ− δ) ∗ Rµ‖0 =: αµ < β (16)

and

R∗2µ ≥ βRµ. (17)

Here continuity of the map µ �→ Rµ refers to the topology on M inherited from
M1(R) and to our usual topology on Prob∞(R). In order to see that such a choice
of β and µ �→ Rµ is possible, we may consider for each Rµ a uniform distribution
U[−	,	] on the interval [−	, 	]. Then, regardless of the choice of 	, we will have
(17) with β := 1/2. We now apply 2.5 (d) to (the density of) U[−1,1] in place of g,
to 1/2 in place of ε, and to µ− δ with µ ∈M in place of µ. Since (µ− δ)(R) = 0,
the result is the existence of a continuous function 	 : M→ [1,∞[ with

‖(µ− δ) ∗M	(µ)U[−1,1]‖0 <
1

2
(µ ∈M).
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Thus we putRµ := M	(µ)U[−1,1] = U[−	(µ),	(µ)], which depends continuously on
µ by 2.5 (a) with r = ∞.

Step 2: Definition of a map f �→ (Pf ,Qf ) satisfying (15). Let f ∈ F .
Put f0 := f T̂ . Then f0 ∈ F . Let µ be the element of M ∩M1

r (R) with

f0 = µ̂ (18)

(compare the statement about G and the Fourier transform in 2.4). We put

R := Rµ, α := αµ, (19)

S := β−1|(µ− δ) ∗ R|, (20)

Q0 := (1− α
β
)R∗2 ∗

∞∑
k=0

S∗k [convergence in M1(R)], (21)

P = Pf := µ ∗Q0, (22)

Q = Qf := Q0 ∗ T . (23)

Here the geometric series in (21) converges in M1(R) since, by (16), S is a sub–
probability measure with ‖S‖0 = S(R) = α/β < 1. It follows that Q0 ∈ Prob(R)
and thus Q ∈ Prob(R). Also P(R) = 1 and, easily verified,

(1− α
β
)−1P = µ ∗ R∗2 ∗

∞∑
k=0

S∗k

= R∗2 + R∗2 ∗ (µ− δ + S) ∗
∞∑
k=0

S∗k,

where, using (17) and (20),

R∗2 ∗ (µ− δ + S) ≥ R ∗ (R ∗ (µ− δ)+ βS)
≥ 0.

Hence P ≥ 0 and thus P ∈ Prob(R). Using (22) and (23), we get

P̂ = f0Q̂0 = f T̂ Q̂0 = f Q̂

and hence (15) holds.
We now check that actually P,Q ∈ Probr (R). By 0 ≤ S ≤ β−1(|µ| + δ) ∗ R

and by µ,R ∈ M1
r (R), we have S ∈ M1

r (R). Hence Ŝ ∈ Cr (R). Since (23) and
(21) show that

Q̂(t) = (1− α
β
) · (R̂(t))2 · (1− Ŝ(t))−1T̂ (t) (t ∈ R), (24)

and since R̂, T̂ ∈ C∞(R), it follows that Q̂ ∈ Cr (R).
From (15) we deduce that P̂ is Cr as well, at least in some neighbourhood of

zero. Since P,Q are probability measures and since r ∈ 2N0∪{∞}, it follows that
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P,Q ∈ Probr (R). For this last step compare, for example, Feller (1971, page 528,
problem 15).

To sum up, we have constructed a function f �→ (Pf ,Qf ) having all properties
as claimed, except perhaps continuity.

Step 3: Verification of continuity. Still using the notation introduced in
Steps 1 and 2, we first observe that the map

F � f �→ (µ,R, α, S) ∈ M1
r (R)× Prob∞(R)× [0,∞[×M1

r (R),

defined by (18), (19) and (20), is continuous. To verify this, recall the notation G
from (11), observe that F � f �→ f0 ∈ G is continuous, then use the continuity
of G � f0 �→ µ as stated in 2.4, recall that M1

r (R) is continuously embedded in
M1(R), use continuity of M � µ �→ Rµ from Step 1, and observe that continuity
of M1

r (R) × Prob∞(R) � (µ,R) �→ (α, S) ∈ [0,∞[×M1
r (R) follows from the

properties stated in 2.4.
We now observe that the map

Prob∞(R)× [0,∞[×M1
r (R) � (R, α, S)

�→ Q0 ∈ M1
r (R) with the topology inherited from M1(R)

given by (21) is continuous, and hence so is the map

M1
r (R)× Prob∞(R)× [0,∞[×M1

r (R) � (µ,R, α, S)
�→ (P,Q) ∈ Probr (R)× Probr (R) with topology from Prob(R)× Prob(R)

given by (21), (22) and (23). (The reader might find it helpful to draw a directed
graph with vertices f, . . . ,Q and with arrows indicating the various maps under
discussion.)

Translating from the above into the language of convergent sequences, we get
in particular: If fn → f in F , and if Rn, αn, Sn, Pn,Qn correspond to fn in the
same way as R, α, S, P,Q correspond to f , then Sn→ S in M1

r (R) and

Pn→ P, Qn→ Q with respect to the Prob(R) topology. (25)

Applying (24) to Rn, αn, Sn,Qn and then using (15) with fn, Pn,Qn, we get con-
vergence of all moments of Pn and Qn of order < r + 1 to the corresponding
moments of P and Q. Combined with (25), this yields the desired convergence
Pn→ P ,Qn→ Q with respect to the Probr (R) topology, as is proved in Mattner
(1999, Subsection 2.4), explicitly in the case r = ∞ and implicitly in the case
r ∈ 2N0. �	

We recall the notation κ(r) from (3) and put for abbreviation

κ := κ(∞).
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3.2. Differences of cumulants. Every a ∈ R
N can be written as a = κ(P )−κ(Q)

for some P,Q ∈ Prob∞(R).

Proof. Let a ∈ R
N. By Borel’s theorem 2.3(a), there is a function g ∈ C∞(R)

with Taylor expansion g(t) ∼ ∑∞
�=1 a�

(it)�

�! as t → 0. We may assume that g is
hermitean, since otherwise we could replace g(t) by 1

2

(
g(t)+g(−t)). Applying 3.1

(a) with r = ∞ to f := eg , we get P,Q ∈ Prob∞(R) with egQ̂ = P̂ . By taking
logarithms near zero and by recalling the definition (2), we get a = κ(P )− κ(Q).

�	

3.3. Uniqueness of ψ . If G is a group and if ϕ : Probr (R)→ G is a homomor-
phism, then there exists at most one homomorphismψ : R

r → Gwith ϕ = ψ◦κ(r).
Remark. With no topology and hence no continuity assumption involved, there
need not exist any such ψ .

Proof. It suffices to prove the claim and the remark for r = ∞, since the remaining
cases follow by considering the restriction ϕ|Prob∞(R). So let r = ∞.

Let ψ be a homomorphism as stated. Given a ∈ R
N, choose P,Q according

to 3.2. Then, writing the group operation in G multiplicatively, we have

ψ(a) = ψ
(
κ(P )− κ(Q)) = ψ

(
κ(P )

)−1
(
ψ

(
κ(Q)

))−1 = ϕ(P )
(
ϕ(Q)

)−1

and the right hand side does not depend on ψ .
To prove the remark, define a homomorphism on Prob∞(R) into the multiplica-

tive group of all germs at zero of C∞ functions f with f (0) = 1 by setting ϕ(P ) :=
germ at zero of P̂ . LetP,Q be any examples proving nonuniqueness in the Stieltjes
moment problem, that is, we have P,Q ∈ Prob∞(R) with supp P ⊂ [0,∞[ and
supp Q ⊂ [0,∞[, κ(P ) = κ(Q), but P �= Q. (The classical example has for P
a log-normal distribution, see Feller (1971, page 227).) Then, for every nonempty
open interval I in R, we have P̂ |I �= Q̂|I . (Reason: By the support assumption,
P̂−Q̂ extends to a continuous function on the closed half-plane {t ∈ C : Im t ≥ 0},
analytic in the interior. By the reflection principle, such a function can’t vanish in
I without vanishing identically.) Hence ϕ(P ) �= ϕ(Q). Thus there can’t exist any
function ψ with ϕ = ψ ◦ κ . �	

3.4. Proof of Theorem 1.1. Let r , ϕ and G be as in the theorem. Then, by 3.3,
there is at most one ψ as in the theorem. It remains to prove existence. We may
assume thatG is abelian, for otherwise we could replaceG by its subgroup gener-
ated by ϕ

(
Probr (R)

)
, which obviously is abelian. We will use additive notation for

the group operations in G. We also recall the Taylor map notation Tr from (6) and
apply it more generally to Cr functions defined merely in some neighbourhood of
zero.

Step 1. If P,Q ∈ Probr (R) with P̂ = Q̂ in some neighbourhood U of 0, then
ϕ(P ) = ϕ(Q).
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Proof. Choose R ∈ Prob∞(R) such that the support of R̂ is contained in U . Then
we have R̂P̂ = R̂Q̂ everywhere, and hence R ∗ P = R ∗Q. Applying the homo-
morphism ϕ yields ϕ(R)+ ϕ(P ) = ϕ(R)+ ϕ(Q) and thus ϕ(P ) = ϕ(Q).

Step 2. Assume that r ∈ 2N0 ∪ {∞}. If P,Q ∈ Probr+1(R) with κ(r+1)(P ) =
κ(r+1)(Q), then ϕ(P ) = ϕ(Q).

Proof. Let P,Q ∈ Probr+1(R) with κ(r+1)(P ) = κ(r+1)(Q). There exists an
f ∈ Cr+1

herm(R) and a neighbourhood U of zero with

f Q̂ = P̂ in U. (26)

To construct f and U , we may put U0 := {
Q̂ �= 0

}
and f0 := P̂ /Q̂ in U0, choose

ω ∈ C∞herm(R)with support contained inU0 and withω = 1 in some neighbourhood
U of zero, and define f := ωf0 in U0 and f := 0 in R \ U0.

Then Tr+1(log f ) =
(

0,
(
i�(κ�(P ) − κ�(Q)) : 1 ≤ � < r + 2

)) = 0 and

hence Tr+1(f − 1) = 0. Using 2.3(b), we find fn ∈ Cr+1
herm(R) with fn − 1 = 0

in some neighbourhood of zero Un and with fn → f in the topology of Cr+1(R).
By 3.1 (b), there exist R, S,Rn, Sn ∈ Probr (R) with Rn → R, Sn → S and
f Ŝ = R̂, fnŜn = R̂n for all n. Recalling (26), we see that P̂ Ŝ = Q̂R̂ in the
neighbourhood of zero {f �= 0}, so that Step 1 applied to P ∗ S and Q ∗ R yields
ϕ(P )+ ϕ(S) = ϕ(Q)+ ϕ(R) and hence

ϕ(P )− ϕ(Q) = ϕ(R)− ϕ(S)
= lim

n→∞
(
ϕ(Rn)− ϕ(Sn)

)
[by continuity of ϕ]

= lim
n→∞ 0 [Step 1 applied to Rn and Sn]

= 0.

Step 3. If r = ∞, then there exists a ψ as stated in the theorem.
Proof. For every a ∈ R

N and any P,Q ∈ Prob∞(R) with a = κ(P )− κ(Q),
we put

ψ(a) := ϕ(P )− ϕ(Q). (27)

We claim that ψ : R
N → G is a well-defined continuous homomorphism with

ϕ = ψ ◦ κ .
To prove thatψ is well-defined by (27), let a ∈ R

N. Then we can chooseP,Q as
above, by 3.2. Suppose we have two choices, that is, P1,Q1, P2,Q2 ∈ Prob∞(R)
with κ(P1)−κ(Q1) = a = κ(P2)−κ(Q2). Then κ(P1∗Q2) = κ(P2∗Q1), so that
Step 2 yieldsϕ(P1∗Q2) = ϕ(P2∗Q1), implyingϕ(P1)−ϕ(Q1) = ϕ(P2)−ϕ(Q2).

ψ is a homomorphism, since for a, b ∈ R
N and P,Q,R, S ∈ Prob∞(R) with

a = κ(P )−κ(Q),b = κ(R)−κ(S), we havea+b = κ(P ∗R)−κ(Q∗S), and hence
ψ(a+b) = ϕ(P ∗R)−ϕ(Q∗S) = ϕ(P )−ϕ(Q)+ϕ(R)−ϕ(S) = ψ(a)+ψ(b).

To check that ϕ = ψ ◦ κ , let P ∈ Prob∞(R). Then, by applying (27) to
a := κ(P ) with the present P and with Q := the neutral element δ of Prob∞(R),
we see that ψ(κ(P )) = ϕ(P )− ϕ(δ) = ϕ(P ).

Finally, to prove continuity of ψ , let a, an ∈ R
N with an → a. By 2.3 (c) and

by general properties of quotients of topological vector spaces, see Rudin (1991,
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Sections 1.40, 1.41), there are real-valued g, gn ∈ C∞(R) with T g = (0, a) ,
T gn = (0, an), and gn → g. We define f, fn ∈ F , compare (14), by setting
f (t) := exp g(it) and fn(t) := exp gn(it) for t ∈ R. Choosing P,Q,Pn,Qn

according to 3.1 (b), we then have a = κ(P ) − κ(Q) and an = κ(Pn) − κ(Qn),
and hence

ψ(an) = ϕ(Pn)− ϕ(Qn)

→ ϕ(P )− ϕ(Q)
= ψ(a)

Step 4. If r ∈ N0, then there exists a ψ as stated in the theorem.
Proof. By applying Step 3 to the restriction of ϕ to Prob∞(R), we get a con-

tinuous homomorphism ψ∞ : R
N→ G with

ϕ|Prob∞(R) = ψ∞ ◦ κ. (28)

With a view towards applying Step 2, let us denote by s the smallest even integer
greater or equal than r , that is,

s :=
{

r (r ∈ 2N0)

r + 1 (r ∈ 2N0 + 1).

Let x ∈ R
N. By 3.2, there are P,Q ∈ Prob∞(R) with

κ(P )− κ(Q) = (0, . . . , 0︸ ︷︷ ︸
s+1

, xs+2, xs+3, . . . ),

so that

ψ∞(0, . . . , 0, xs+2, xs+3, . . . ) = ψ∞
(
κ(P )

)− ψ∞(
κ(Q)

)
= ϕ(P )− ϕ(Q)
= 0,

where the last equality comes from Step 2, with the present s andϕ|Probs (R) playing
the roles of r and ϕ. Thus

ψ∞(x) = ψ∞(x1, . . . , xs+1, 0, . . . )+ ψ∞(0, . . . , 0, xs+2, . . . )

= ψ∞(x1, . . . , xs+1, 0, . . . ).

Hence, with the continuous homomorphism ψs+1 : R
s+1 → G defined by

ψs+1(x) := ψ∞(x1, . . . , xs+1, 0, . . . ) (x ∈ R
s+1),

(28) yields

ϕ|Prob∞(R) = ψs+1 ◦ κ(s+1)|Prob∞(R). (29)

As Prob∞(R) is dense in Probs+1(R), we deduce from (29) by continuity that

ϕ|Probs+1(R)
= ψs+1 ◦ κ(s+1). (30)
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To continue, let c ∈ ]0,∞[. By Mattner (1999, Lemma 1.7 b)), there is a se-
quence (Pn) in Prob∞(R) such that, for n→∞, we have Pn→ δ in the topology
of Probs(R) and hence κ�(Pn)→ κl(δ) = 0 for � = 1, . . . , s, but κs+1(Pn)→ c.
Consequently we have, for n→∞,

0 = ϕ(δ)← ϕ(Pn) = ψs+1
(
κ1(Pn), . . . , κs+1(Pn)

)→ ψs+1(0, . . . , 0︸ ︷︷ ︸
s

, c).

As ψs+1 is a homomorphism, we can remove the assumption c > 0 and get

ψs+1(0, . . . , 0, c) = 0 (c ∈ R). (31)

Hence, with the continuous homomorphism ψs : R
s → G defined by

ψs(x1, . . . , xs) := ψs+1(x1, . . . , xs, 0) (x ∈ R
s),

(30) and (31) yield

ϕ(P ) = ψs
(
κ(s)(P )

)
(P ∈ Probs+1(R)). (32)

As Probs+1(R) is dense in Probs(R), identity (32) extends by continuity to P ∈
Probs(R). In the case of s = r , we now put ψ := ψs . In the remaining case of
s = r + 1, we repeat the above argument based on Mattner (1999, Lemma 1.7 b)),
and end up with ψ(x1, . . . , xr ) := ψs(x1, . . . , xr , 0). �	
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