9.1.12

Übungen zur Einführung in die Mathematik

Blatt 11

Abgabe: bis Montag 16.1.12 10:00 Uhr in Kasten E 12

Aufgabe 11.1 (6 Punkte)

Es sei $(z_i)_{i\in I}$ eine Familie komplexer Zahlen. Zeigen Sie die Äquivalenz der folgenden Aussagen.

- i) $(z_{\iota})_{\iota \in I}$ ist summierbar,
- ii) $(\overline{z}_{\iota})_{\iota \in I}$ ist summierbar,
- iii) $(\operatorname{Re}(z_{\iota}))_{\iota \in I}$ und $(\operatorname{Im}(z_{\iota}))_{\iota \in I}$ sind summierbar.

Zeigen Sie im Falle der Summierbarkeit, dass $\sum_{\iota \in I} z_{\iota} = \sum_{\iota \in I} \operatorname{Re}(z_{\iota}) + i \sum_{\iota \in I} \operatorname{Im}(z_{\iota})$ und $\sum_{\iota \in I} z_{\iota} = \sum_{\iota \in I} \overline{z}_{\iota}$ gelten.

Aufgabe 11.2 (6 Punkte)

Beweisen Sie die Teile i) α) und i) β) von Satz 3.1.9 der Vorlesung.

Aufgabe 11.3 (4 Punkte)

Es sei $a_{\nu} := b_{\nu} := (-1)^{\nu}/\sqrt{1+\nu}, \nu \in \mathbb{N}_0$. Untersuchen Sie die Reihen $\sum_{\nu=0}^{\infty} a_{\nu}, \sum_{\nu=0}^{\infty} b_{\nu}$ und deren Cauchyprodukt auf Konvergenz. Wie ist der scheinbare Widerspruch zu Korollar 2.2.46 zu erklären?

Aufgabe 11.4 (8 Punkte)

Es sei $\alpha \in \mathbb{C}$. Wir definieren $\binom{\alpha}{0} := 1$ und für $k \in \mathbb{N}$ sei

$$\binom{\alpha}{k} := \frac{\prod_{j=0}^{k-1} (\alpha - j)}{k!}.$$

Dies setzt die Definition des Binomialkoeffizienten $\binom{\alpha}{k}$ für $\alpha \in \mathbb{N}_0$ nach $\alpha \in \mathbb{C}$ fort. Für festes $\alpha \in \mathbb{C}$ sei $b_{\alpha}(z) := \sum_{k=0}^{\infty} \binom{\alpha}{k} z^k, z \in \mathbb{C}$ (sog. *Binomialreihe*).

- i) Bestimmen Sie den Konvergenzradius der Potenzreihe b_{α} in Anhängigkeit von α , indem Sie die Fälle $\alpha \in \mathbb{N}_0$ und $\alpha \in \mathbb{C} \backslash \mathbb{N}_0$ unterscheiden.
- ii) Zeigen Sie mit vollständiger Induktion nach $n \in \mathbb{N}_0$, dass $\binom{\alpha+\beta}{n} = \sum_{\nu=0}^n \binom{\alpha}{n-\nu} \binom{\beta}{\nu}$ für alle $n \in \mathbb{N}_0$, $\alpha, \beta \in \mathbb{C}$ gilt.
- iii) Es seien $\alpha, \beta \in \mathbb{C}$. Zeigen Sie, dass $b_{\alpha}(z)b_{\beta}(z) = b_{\alpha+\beta}(z)$ für alle |z| < 1.
- iv) Zeigen Sie, dass $\sqrt[k]{1+x} = b_{\frac{1}{k}}(x)$ für alle $k \in \mathbb{N}$ und $x \in (-1,1)$

Aufgabe 11.5 (4 Punkte)

 $\overline{\text{Für }k} \in \mathbb{N} \setminus \{1\}$ sei $\zeta(k) := \sum_{n=1}^{\infty} \frac{1}{n^k}$. Beweisen Sie mit Hilfe des Doppelreihensatzes $\sum_{k=2}^{\infty} (\zeta(k) - 1) = 1$.

Im Tutorium am Mittwoch, 11.1.12, wird die Probeklausur besprochen.