SS 2008

T. Pohlen

4. Übung zur Analysis IV

Abgabe: 05.05.2008 vor der Übung

Aufgabe 9 (4+3 Punkte)

- a) Es sei γ eine Parametrisierung des Quadrates mit Ecken -r-ir, r-ir, r+ir, -r+ir (in dieser Reihenfolge) für ein festes r>0. Berechnen Sie $\int\limits_{\gamma}^{1} \frac{1}{z} dz$.
- b) Es seien $r:[0,2\pi]\to [0,\infty)$ stetig und stückweise stetig differenzierbar mit $r(0)=r(2\pi)$ und $\gamma:[0,2\pi]\to\mathbb{C}$ definiert durch $\gamma(t):=r(t)\,e^{it}$. Ferner sei $B:=\{\lambda\gamma(t):0\leq\lambda\leq 1,0\leq t\leq 2\pi\}$. Zeigen Sie: $\lambda^2(B)=\frac{1}{2i}\int\limits_{\gamma}\bar{z}\,dz$.

Aufgabe 10 (2+2+2 Punkte)

Untersuchen Sie $f: U \to \mathbb{C}$ auf Holomorphie und geben Sie df(z)(w) an.

(i)
$$f(z) = z_1 |z_2|^2$$
, $U = \mathbb{C}^2$.

(ii)
$$f(z) = \sum_{\nu=1}^{n} Re(z_{\nu}), U = \mathbb{C}^{n}.$$

(iii)
$$f(z) = e^{z_1} + z_2^2 z_3 - 3z_1, U = \mathbb{C}^3.$$

Aufgabe 11 (2+3+2 Punkte)

- a) Es sei $U \subset \mathbb{C}^n$ offen. Beweisen Sie: Ist $f: U \to \mathbb{C}$ holomorph und ohne Nullstellen, so ist auch $\frac{1}{f}$ holomorph auf U. Geben Sie $\frac{\partial}{\partial \overline{z_{\nu}}} \frac{1}{f}$ ($\nu = 1, \ldots, n$) in Abhängigkeit von $\frac{\partial f}{\partial \overline{z_{\nu}}}$ an.
- b) Es seien $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ stetig differenzierbar. Ferner seien u := Re(f) und v := Im(f). Beweisen Sie:

$$f$$
 holomorph $\iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ und $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ auf U

(so genannte Cauchy-Riemannsche Differentialgleichungen).

c) Es seien $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph. Zeigen Sie: Es gilt

$$f'(z) = \frac{\partial f}{\partial x}(z) = -i \cdot \frac{\partial f}{\partial y}(z)$$

für alle $z \in U$.