L. Frerick WS 2007/2008
T. Pohlen 19.12.2007

9. Übung zur Analysis III

Abgabe: 09.01.2008, 8 Uhr s.t., Kasten 12

Aufgabe 22 (4 Punkte)

Es sei $\emptyset \neq U \subset \mathbb{K}^d$ offen. Beweisen Sie: $V \subset U$ ist genau dann beschränkt in U, wenn V relativ kompakt in U ist.

Aufgabe 23 (2+4 Punkte)

- a) Bestimmen Sie das Lösungsintervall der maximalen Lösung des Anfangswert-problems $x' = \frac{t^2 x^3}{1 + x^2} + e^t \cos(x), x(1) = 2.$
- b) Es sei $I \subset \mathbb{R}$ ein offenes Intervall und $D := I \times \mathbb{K}^d$. Ferner sei $f \in C(D, \mathbb{K}^d)$ so, dass für alle kompakten Intervalle $J \subset I$ ein $L = L(J) \geq 0$ existiert mit $||f(t,x) f(t,y)||_2 \leq L||x-y||_2$ für alle $(t,x), (t,y) \in J \times \mathbb{K}^d$. Beweisen Sie: Für jedes $(t_0,x_0) \in D$ gilt $I_{(t_0,x_0)} = I$, wobei $I_{(t_0,x_0)}$ das Lösungsintervall der maximalen Lösung des Anfangswertproblems $x' = f(t,x), x(t_0) = x_0$ ist.

Aufgabe 24 (3+3 Punkte)

Bestimmen Sie die maximalen Lösungen zum Anfangswertproblem $x' = f(t, x), x(t_0) = x_0$, (mit $f: D \to \mathbb{K}^d$).

(i)
$$D = \mathbb{R}^2, x' = t^2 x^2, x(0) = x_0 \in \mathbb{R}.$$

(ii)
$$D = (0, \infty) \times \mathbb{C}, z' = \frac{iz}{t^2}, z\left(\frac{1}{\pi}\right) = \frac{1}{i}.$$

Fröhliche Weihnachten und ein frohes neues Jahr wünschen Leonhard Frerick, Dennis Sieg und Timo Pohlen.