Constrained Single-Step One-Shot Method with Applications in Aerodynamics

Nicolas R. Gauger1),2)

1) German Aerospace Center (DLR) Braunschweig Institute of Aerodynamics and Flow Technology Numerical Methods Branch (C2A2S2E)

2) Humboldt University Berlin Department of Mathematics
Collaborators

• HU Berlin: A. Griewank, A. Hamdi, E. Özkaya, A. Plocke

• DLR: C. Ilic

• Uni Paderborn: A. Walther

• Uni Trier: V. Schulz, S. Schmidt
Problem Statement

Goal: \[\min_{u} f(y,u) \quad \text{s.t.} \quad c(y,u) = 0, \]
where \(y \) and \(u \) are the state and design variables.

Given fixed point iteration \(y_{k+1} = G(y_k,u) \) (e.g. pseudo-time stepping) to solve PDE \(c(y,u) = 0. \)

Assumptions:

- \(\frac{\partial c}{\partial y} \) always invertible. IFT \(\Rightarrow \) given \(u \), \(\exists! y \) s.t. \(c(y,u) = 0. \)
- \(G, f \in C^{2,1}. \)
- \(G \) contractive: \(\|G_y(y,u)\| = \|G^T_y(y,u)\| \leq \rho < 1 \)
One-Shot approach

\[L(y, \bar{y}, u) = f(y, u) + (G(y, u) - y)^T \bar{y} \]
\[= N(y, \bar{y}, u) - y^T \bar{y} \]

shifted Lagrangian

Stationary point:

\[\begin{align*}
L_{\bar{y}} &= G(y, u) - y = 0 \\
L_y &= N_y(y, \bar{y}, u)^T - \bar{y} = 0 \\
L_u &= N_u(y, \bar{y}, u)^T = 0
\end{align*} \]

One-step one-shot (step \(k+1\)):

\[\begin{align*}
y_{k+1} &= G(y_k, u_k) \quad \text{primal update} \\
\bar{y}_{k+1} &= N_y(y_k, \bar{y}_k, u_k)^T \quad \text{dual update} \\
u_{k+1} &= u_k - B_k^{-1} N_u(y_k, \bar{y}_k, u_k)^T \quad \text{design update}
\end{align*} \]

Aims: Choose \(B\) such that:

- Convergence of \((OS)\).
- Bounded retardation.
Bounded retardation

Jacobian of the extended iteration:

\[
J_* = \left. \frac{\partial (y_{k+1}, \bar{y}_{k+1}, u_{k+1})}{\partial (y_k, \bar{y}_k, u_k)} \right|_{(y^*, \bar{y}^*, u^*)} = \begin{pmatrix} G_y & 0 & G_u \\ N_{yy} & G_y^T & N_{yu} \\ -B^{-1} N_{uy} & -B^{-1} G_u^T & I - B^{-1} N_{uu} \end{pmatrix}
\]

Whenever we can define \(B \) such that

\[
\frac{1 - \rho(G_y)}{1 - \hat{\rho}(J_*)} < \text{const}
\]

we have bounded retardation.
Necessary condition for contractivity

Eigenvalues of J_* are the zeros of the equation

$$\det((\lambda - 1)B + H(\lambda)) = 0$$

where

$$H(\lambda) = \left(-G_u^T(G_y^T - \lambda I)^{-1}, I\right)\begin{pmatrix} N_{yy} & N_{yu} \\ N_{uy} & N_{uu} \end{pmatrix}\left(-(G_y - \lambda I)^{-1}G_u \right).$$

Necessary (but not sufficient) condition for contractivity:

$$B = B^T > 0 \quad \text{and} \quad B > \frac{1}{2} H(-1).$$

[Griewank, 2006]
Remark:

Deriving (sufficient) conditions on B for J^* to have a spectral radius smaller than 1 has proven difficult. Instead, we look for descent on the augmented Lagrangian

$$L^a (y, \bar{y}, u) := \frac{\alpha}{2} \| G(y, u) - y \|^2 + \frac{\beta}{2} \left\| N_y (y, \bar{y}, u)^T - \bar{y} \right\|^2 + \left(N - \bar{y}^T y \right),$$

where $\alpha > 0$ and $\beta > 0$.
Correspondence condition

The full gradient of L^a is given by

$$\begin{bmatrix}
\nabla_y L^a \\
\nabla_y L^a \\
\nabla_u L^a
\end{bmatrix} = -Ms(y, \bar{y}, u), \quad \text{where} \quad s(y, \bar{y}, u) = \begin{bmatrix}
G(y, u) - y \\
N_y (y, \bar{y}, u)^T - \bar{y} \\
- B^{-1} N_u (y, \bar{y}, u)^T
\end{bmatrix}$$

and

$$M = \begin{bmatrix}
\alpha(I - G_y^T), -I - \beta N_{yy}, 0 \\
- I, \beta(I - G_y), 0 \\
- \alpha G_u^T, - \beta N_{yu}^T, B
\end{bmatrix}.$$
Correspondence condition

Consequence (Correspondence condition):
There is a 1-1 correspondence between the stationary points of L^a and the roots of s if

$$\det[\alpha\beta(I - G_y^T)(I - G_y) - I - \beta N_{yy}] \neq 0,$$

for which it is sufficient that

$$\alpha\beta(1 - \rho)^2 > 1 + \beta\|N_{yy}\|.$$

[Hamdi, Griewank, 2008]
Descent condition

Theorem (Descent condition):

\(s(y, \bar{y}, u) \) is a descent direction for all large positive \(B \)

if and only if

\[
\alpha \beta (I - \frac{1}{2} (G_y + G_y^T)) > (I + \frac{\beta}{2} N_{yy})(I - \frac{1}{2} (G_y + G_y^T))^{-1} (I + \frac{\beta}{2} N_{yy}),
\]

which is implied by

\[
\sqrt{\alpha \beta} (1 - \rho) > 1 + \frac{\beta}{2} \|N_{yy}\|.
\]

- Satisfied for \(\beta = \frac{2}{c}, \quad \alpha = \frac{2c}{(1 - \rho)^2} \) with \(c = \|N_{yy}\| \).

Theorem: A suitable \(B \) is given by:

\[
B = \alpha G_u^T G_u + \beta N_{yu}^T N_{yu} + N_{uu}.
\]

[Hamdi, Griewank, 2008]
One-step one-shot
Aerodynamic shape design

Descent for \(\beta = \frac{2}{c} \), \(\alpha = \frac{2c}{(1-\rho)^2} \) with \(c = \| N_{yy} \| \).

(In practice choose \(c = 1, \quad \Rightarrow \quad \beta = 2, \quad \alpha >> 1. \))

A suitable \(B \) is given by \(B = \alpha G_u^T G_u + \beta N_{yu}^T N_{yu} + N_{uu} \).

Instead BFGS updates for the Hessian

\[
\nabla_u^2 L^a = \underbrace{\alpha G_u^T G_u + \beta N_{yu}^T N_{yu} + N_{uu}}_{B} + \underbrace{\alpha (G - y)^T G_u}_{\rightarrow 0} + \underbrace{\beta (N_y^T - \bar{y})^T N_{yu}}_{\rightarrow 0}.
\]

The gradient \(\nabla_u L^a = \alpha (G - y)^T G_u + \beta (N_y - \bar{y})^T N_{yu} + N_u \)

is evaluated by Algorithmic Differentiation (AD).
One-step one-shot
Aerodynamic shape design

- Transonic case: RAE 2822 at $Ma = 0.73$ with $\alpha = 2^\circ$
- Cost function: drag (cd)
- τ_{ij} (2D Euler) + mesh deformation + parameterization
- First and second derivatives by AD tool ADOL-C
- Geometric constraint: constant thickness
- Camberline/Thickness decomposition, 20 Hicks-Henne coefficients define camberline
Automatic Differentiation of Entire Design Chain

- Adjoint version of entire design chain by ADOL-C
- TAUij (2D Euler) + mesh deformation + parameterization

\[
\frac{dC_D}{dP} = \frac{\partial C_D}{\partial m} \cdot \frac{\partial m}{\partial (dx)} \cdot \frac{\partial (dx)}{\partial x_{\text{new}}} \cdot \frac{\partial x_{\text{new}}}{\partial P} \quad \text{and} \quad \frac{\partial (dx)}{\partial x_{\text{new}}} = \frac{\partial (x_{\text{new}} - x_{\text{old}})}{\partial x_{\text{new}}} = Id
\]

TAUij_AD meshdefo_AD defgeo_AD
One-step one-shot

Drag reduction
- RAE 2822, $M = 0.73$, $\alpha = 2.0^\circ$
- inviscid flow, mesh 161x33 cells
- 20 design variables (Hicks-Henne)
- One-step one-shot

Flow Solver: TAUij
- Compressible Euler
- Explicit RK-4
- Multigrid
- Implicit residual smoothing

Graphs showing flow characteristics and optimization iterations.
Primal compared to coupled iteration

Retardation-Factor = 4

[Özkaya, Gauger, 2008]
Treatment of lift constraint by penalty multiplier method

\[\min_u C_D(y, u) \quad s.t. \quad C_L \geq C_{L, target} \quad and \quad y = G(y, u) \]

Penalty function for lift:
\[h = (C_{L, target} - C_L), \quad h \leq 0 \]

Redefine objective function:
\[f = C_D + \lambda h \]

min \[C_D(y, u) + \lambda h \quad ; \quad h \to 0 \]

Update the penalty parameter in each one-shot step \(k \):
\[\lambda_{k+1} = \lambda_k (1 + ch), \quad c > 0 \]
\[h > 0 \quad \Rightarrow \quad \lambda \uparrow, \quad h < 0 \quad \Rightarrow \quad \lambda \downarrow \]

A good starting value is:
\[\lambda_0 = \frac{\| \nabla_u C_D \|}{\| \nabla_u h \|} \]
Constrained One-Step One-Shot

Drag reduction by constant lift
- RAE 2822, $M = 0.73$, $\alpha = 2.0^\circ$
- inviscid flow, mesh 161x33 cells
- 40 design variables (Hicks-Henne)
- One-step one-shot

Flow Solver: TAUij
- Compressible Euler
- Explicit RK-4
- Multigrid
- Implicit residual smoothing

Cp Distribution

Airfoil Shape
Primal compared to coupled iteration

Retardation-Factor = 6

[Gauger, Plocke, 2008]
History of Penalty Multiplier

[Gauger, Plocke, 2008]
Extension to Navier-Stokes (ELAN Code)

Flow Solver: ELAN (TU Berlin)
- 3D Navier-Stokes (RANS)
- incompressible with pressure correction
- multiblock
- k-ω (Wilcox) turbulence model (and others)
- Fortran (20,000 lines)

AD Tool: TAPENADE (INRIA)
- source to source
- reverse for first derivatives
- tangent on reverse for second derivatives
Drag reduction with lift constraint
- NACA 4412
- Re = 1.000.000, α=5.1°
- RANS
- k-ω (Wilcox) turbulence model
- 300 surface mesh points

Approaches for Optimization
- one-shot method
- entire design chain differentiated
- gradient smoothing
- penalty multiplier method

Extension to Navier-Stokes (ELAN Code)
Drag reduction with lift constraint

- NACA 4412
- \(\text{Re} = 1,000,000, \; \alpha = 5.1^\circ \)
- RANS
- \(k-\omega \) (Wilcox) turbulence model
- 300 surface mesh points

Approaches for Optimization

- one-shot method
- entire design chain differentiated
- gradient smoothing
- penalty multiplier method
Drag reduction with lift constraint

- NACA 4412
- \(Re = 1.000.000, \quad \alpha = 5.1^\circ \)
- RANS
- \(k - \omega \) (Wilcox) turbulence model
- 300 surface mesh points

5% drag reduction

Approaches for Optimization

- one-shot method
- entire design chain differentiated
- gradient smoothing
- penalty multiplier method

[Özkaya, Gauger, 2009]
Thanks for your attention!