5. Übung zur Vorlesung Elemente der Analysis III

 $\ddot{\mathrm{U}}$ 19: Berechnen Sie die partiellen Ableitungen der Ordnung 2 für

(i)
$$f(x,y) = x^y$$
 $(x > 0, y \in \mathbb{R}),$

(ii)
$$f(x, y, z) = \sqrt{z}\sin(xy^2)$$
 $(x, y \in \mathbb{R}, z > 0)$.

Ü 20: Die Funktion $f:\mathbb{R}^2 \to \mathbb{R}$ sei definiert durch

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}.$$

- (i) Berechnen Sie die partiellen Ableitungen $\partial_1 f$ und $\partial_2 f$ auf \mathbb{R}^2 .
- (ii) Berechnen Sie $\partial_1 \partial_2 f(0,0)$ und $\partial_2 \partial_1 f(0,0)$.

Ü 21 Berechnen Sie $\sum_{r=0}^{2} \frac{\partial_r^{\nu} f(x^{(0)})}{\nu!} |x-x^{(0)}|^{\nu}$ für

$$f(x_1, x_2) = x_1^{x_2} \quad (x_1 > 0, x_2 \in \mathbb{R})$$

und
$$x^{(0)} = (2,1)$$
 sowie $r = (x - x^{(0)})/|x - x^{(0)}|$.

Ü 22: Bestimmen Sie die lokalen Extremstellen der folgenden Funktionen $f:\mathbb{R}^2 \to \mathbb{R}$

a)
$$f(x,y) = x^2 + xy + y^2 + x + y + 1$$
 $(x, y \in \mathbb{R})$.

b)
$$f(x,y) = x^3 + y^3 - 3xy$$
 $(x, y \in \mathbb{R}).$

Ü 23: Es sei $f:[0,1]\times[0,1]\to\mathbb{R}$ definiert durch

$$f(x,y) = x + y$$
 $(x, y \in [0,1])$.

Bestimmen Sie die Extremstellen von f.