SS 2004

19.05.2004

4. Übung zur Vorlesung Elemente der Analysis II

Gruppenübungen

G9: Untersuchen Sie die folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ auf Stetigkeit

(i)
$$f(x) = \begin{cases} 1, & x \in \mathbb{N} \\ 0, & x \in \mathbb{R} \setminus \mathbb{N} \end{cases},$$

(ii)
$$f(x) = [x] (:= \max\{m \in \mathbb{Z} : m \le x\}).$$

Für welche x_0 existiert $\lim_{x\to x_0} f(x)$ und was ist im Falle der Existenz der Wert?

G10: Es sei E ein normierter Raum, und es sei $A \subset E$ abgeschlossen. Ferner seien φ : $A \to A$ stetig und $a_0 \in A$. Zeigen Sie: Ist (a_n) definiert durch $a_{n+1} := \varphi(a_n)$ für $n \in \mathbb{N}_0$ und ist $\lim_{n \to \infty} a_n = a$, so gilt $\varphi(a) = a$ (d.h. a ist ein Fixpunkt von φ).

Hausübungen

H10: Untersuchen Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} x, & 1/x \in \mathbb{N} \\ 0, & \text{sonst} \end{cases}$$

auf Stetigkeit. Für welche x_0 existiert $\lim_{x\to x_0} f(x)$ und was ist im Falle der Existenz der Wert?

H11: Es seien $f, g : \mathbb{R} \to \mathbb{R}$ und $x_0 \in \mathbb{R}$. Untersuchen Sie, welche der folgenden Aussagen wahr sind.

a) Ist
$$\lim_{n \to \infty} f(x_0 + \frac{1}{n}) = \lim_{n \to \infty} f(x_0 - \frac{1}{n}) = g$$
, so gilt $\lim_{x \to x_0} f(x) = g$.

b) Existiert
$$\lim_{x \to x_0} f(x)$$
 und gilt $f(x_0 + \frac{1}{n}) \to g$ für $n \to \infty$, so gilt $\lim_{x \to x_0} f(x) = g$.

H12: Zeigen Sie: Für alle $z \in \mathbb{C}$ gilt $|e^z - 1| \le |z|e^{|z|}$.